Close
  Indian J Med Microbiol
 

Figure 2: Effect of ethyl acetate fraction of E. pavieana on nitric oxide production in lipopolysaccharide-stimulated macrophages RAW 264.7. (a) Cells were incubated with various concentrations of ethyl acetate fraction of E. pavieana in the presence of 1 μg/mL lipopolysaccharide for 24 h. Accumulated nitrite concentrations were determined in the medium. Percentage inhibition of nitric oxide production from each treatment is given in relation to nitrite concentration of lipopolysaccharide-stimulated RAW264.7 macrophage cells. (b) Cells were treated with various concentrations of ethyl acetate fraction of E. pavieana for 24 h. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Each column shows the mean ± standard deviation of three independent experiments with triplicate samples. *P < 0.05, **P < 0.01, and ***P < 0.001 compared to the lipopolysaccharide-conditioned media (a: 695 mm × 491 mm; b: 716 mm × 505 mm)

Figure 2: Effect of ethyl acetate fraction of <i>E. pavieana</i> on nitric oxide production in lipopolysaccharide-stimulated macrophages RAW 264.7. (a) Cells were incubated with various concentrations of ethyl acetate fraction of <i>E. pavieana</i> in the presence of 1 μg/mL lipopolysaccharide for 24 h. Accumulated nitrite concentrations were determined in the medium. Percentage inhibition of nitric oxide production from each treatment is given in relation to nitrite concentration of lipopolysaccharide-stimulated RAW264.7 macrophage cells. (b) Cells were treated with various concentrations of ethyl acetate fraction of <i>E. pavieana</i> for 24 h. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Each column shows the mean ± standard deviation of three independent experiments with triplicate samples. *<i>P</i> < 0.05, **<i>P</i> < 0.01, and ***<i>P</i> < 0.001 compared to the lipopolysaccharide-conditioned media (a: 695 mm × 491 mm; b: 716 mm × 505 mm)