Close
  Indian J Med Microbiol
 

Figure 1: Effect of rice hull extract on lipopolysaccharide (LPS)-induced nitric oxide (NO) production and inducible NO synthase (iNOS) expression in macrophage cells (a) Effect of rice hull extract on LPS-induced NO production by LPS-stimulated RAW 264.7 macrophages. (b) Effect of rice hull extract on viability of LPS-stimulated RAW 264.7 macrophages. (c) Effect of rice hull extract on LPS-induced iNOS expression by LPS-stimulated RAW 264.7 macrophages. Cells (5 × 105) were treated with various rice hull extract concentrations or LPS (1 μ/ml) for 24 h. The cells were then collected and their viability was assessed by MTT assay. The culture medium was collected and subjected to nitrite assay. Nitrate was measured using a Griess reaction. Equal protein loading was confirmed by blotting with anti-β-actin. All data are presented as the mean M SEM of three independent experiments. * P value less than 0.05, statistically significant differences compared to treatment with LPS alone.

Figure 1: Effect of rice hull extract on lipopolysaccharide (LPS)-induced nitric oxide (NO) production and inducible NO synthase (iNOS) expression in macrophage cells (a) Effect of rice hull extract on LPS-induced NO production by LPS-stimulated RAW 264.7 macrophages. (b) Effect of rice hull extract on viability of LPS-stimulated RAW 264.7 macrophages. (c) Effect of rice hull extract on LPS-induced iNOS expression by LPS-stimulated RAW 264.7 macrophages. Cells (5 × 105) were treated with various rice hull extract concentrations or LPS (1 μ/ml) for 24 h. The cells were then collected and their viability was assessed by MTT assay. The culture medium was collected and subjected to nitrite assay. Nitrate was measured using a Griess reaction. Equal protein loading was confirmed by blotting with anti-β-actin. All data are presented as the mean M SEM of three independent experiments. * <i>P</i> value less than 0.05, statistically significant differences compared to treatment with LPS alone.