Close
  Indian J Med Microbiol
 

Figure 6: Effects of BPP on expression of lipolysis-associated target Figure 6: Effects of BPP on expression of lipolysis-associated target genes perilipin, HSL, PDE3B, Gia1, TNFa, and PPAR. in 3T3-L1 cells by quantitative real-time RT-PCR analysis. BPP-treated (48 h, at 50 μM and 100 μM) mature adipocytes (8 days) were stained for intracellular lipids with Oil Red O. Cells stained with Oil Red O were photographed with a phase-contrast microscope (original magnification x 100) (A) and lipid content were quantitated (B). Relative lipid contents (%) were calculated as 100 × (absorbance of sample-treated/absorbance of differentiated control). The mRNA expression levels of lipolysis-associated target genes perilipin, HSL, PDE3B, Gia1, TNFα, and PPARγ were estimated by quantitative real-time RT-PCR analysis (C). Each bar represents the mean ± SD of three independent experiments. * p < 0.05, ** p < 0.01, ***p < 0.001 versus differentiated cells.

Figure 6: Effects of BPP on expression of lipolysis-associated target Figure 6: Effects of BPP on expression of lipolysis-associated target genes perilipin, HSL, PDE3B, Gia1, TNFa, and PPAR. in 3T3-L1 cells by quantitative real-time RT-PCR analysis. BPP-treated (48 h, at 50 μM and 100 μM) mature adipocytes (8 days) were stained for intracellular lipids with Oil Red O. Cells stained with Oil Red O were photographed with a phase-contrast microscope (original magnification x 100) (A) and lipid content were quantitated (B). Relative lipid contents (%) were calculated as 100 × (absorbance of sample-treated/absorbance of differentiated control). The mRNA expression levels of lipolysis-associated target genes perilipin, HSL, PDE3B, Gia<sub>1</sub>, TNFα, and PPARγ were estimated by quantitative real-time RT-PCR analysis (C). Each bar represents the mean ± SD of three independent experiments. * <i>p</i> < 0.05, ** <i>p</i> < 0.01, ***<i>p</i> < 0.001 versus differentiated cells.