Close
  Indian J Med Microbiol
 

Figure 2: Effect of the bioactive fractions from T. triandra on Rh-123 accumulation in A549RT-eto cells. The relative rate of accumulation (RRA) of Rh-123 in A549RT-eto cells (F22 125 μg/mL, Hexadecanoic acid; 61.9 μg/mL; 241 μM, Octadecanoic acid (24.5 μg/mL; 85.9 μM, (Z)-6-octadecenoic acid 38.6 μg/mL; 136.8 μM, M3FA 125 μg/mL; Net fatty acid of 464.2 μM and Verapamil 4.91 μg/mL; 10 μM) was evaluated in terms of the intracellular Rh-123 level as measured by a fluorescence microplate reader at 535 nm. Data are shown as the mean ± 1 SD and are derived from triplicate repeats. Means with a different lowercase letter are significantly different (P < 0.05; Duncan's MMT)

Figure 2: Effect of the bioactive fractions from <i>T. triandra</i> on Rh-123 accumulation in A549RT-eto cells. The relative rate of accumulation (RRA) of Rh-123 in A549RT-eto cells (F22 125 μg/mL, Hexadecanoic acid; 61.9 μg/mL; 241 μM, Octadecanoic acid (24.5 μg/mL; 85.9 μM, (Z)-6-octadecenoic acid 38.6 μg/mL; 136.8 μM, M3FA 125 μg/mL; Net fatty acid of 464.2 μM and Verapamil 4.91 μg/mL; 10 μM) was evaluated in terms of the intracellular Rh-123 level as measured by a fluorescence microplate reader at 535 nm. Data are shown as the mean ± 1 SD and are derived from triplicate repeats. Means with a different lowercase letter are significantly different (<i>P</i> < 0.05; Duncan's MMT)