Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Reader Login
Pharmacognosy Magazine
Search Article 
Advanced search 
Export selected to
Reference Manager
Medlars Format
RefWorks Format
BibTex Format
  Access statistics : Table of Contents
   2017| April-June  | Volume 13 | Issue 50  
    Online since July 11, 2017

  Archives   Previous Issue   Next Issue   Most popular articles   Most cited articles
Hide all abstracts  Show selected abstracts  Export selected to
  Viewed PDF Cited
Characterization, antibacterial and antioxidant properties of silver nanoparticles synthesized from aqueous extracts of Allium sativum, Zingiber officinale, and Capsicum frutescens
Gloria Aderonke Otunola, Anthony Jide Afolayan, Emmanuel Olusegun Ajayi, Samuel Wale Odeyemi
April-June 2017, 13(50):201-208
DOI:10.4103/pm.pm_430_16  PMID:28808381
Background: Herbal drug delivery is limited by poor solubility and bioavailability which can be overcome with suitable nanomaterials that will enhance their pharmacokinetics and performance. Objective: This study aimed to analyze the synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from three spices. Materials and Methods: AgNPs were prepared using 0.1 M silver nitrate and aqueous extracts of Allium sativum L. (garlic), Zingiber officinale Rosc. (ginger), and Capsicum frutescens L. (cayenne pepper). The AgNPs were characterized using ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Results: The AgNPs were formed within an hour of the reaction and showed maximum UV-Vis absorption in the 375–480 nm range. SEM and TEM revealed well-dispersed spherical particles with little agglomeration, average sizes of 3–6 nm, 3–22 nm, and 3–18 nm for garlic, ginger, and cayenne pepper, respectively. FTIR showed that amine, protein, phenolic, aromatic, and alkynes groups contributed to AgNP synthesis and XRD confirmed their crystalline and face-centered cubic nature. Antibacterial action of the AgNPs was in the following order: ginger (minimum inhibitory concentration [MIC] <25 μg/mL) > garlic> cayenne pepper (MIC 125 μg/mL). Antioxidant action showed cayenne pepper > ginger > garlic (inhibitory concentration 50% [IC50]: 40, 240, and 250 μg/mL, respectively) against 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) and garlic > cayenne pepper > ginger (IC50: <31.25, 40, and 120 μg/mL, respectively) against 1,1-diphenyl-2-picrylhydrazyl. Conclusion: Optimization of this green synthesis would support the production of AgNPs with great therapeutic potentials. Abbreviations used: AgNPs: Silver nanoparticles; UV-Vis: ultraviolet-visible; SEM: Scanning electron microscopy; TEM: Transmission electron microscopy; EDX: Energy dispersive X-ray; XRD: X-ray diffraction; FTIR: Fourier transform infrared; GaNPs: Garlic nanoparticles; GiNPs: Ginger nanoparticles; C.PeNPs: Cayenne pepper nanoparticles; FCC: Face centred cubic; SPR: Surface Plasmon resonance; ABTS-2: 2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid); DPPH-1: 1-diphenyl-2-picrylhydrazyl.
  6,427 630 20
In vitro cell viability by CellProfiler® software as equivalent to MTT assay
Luciana S Gasparini, Nayana D Macedo, Elisângela F Pimentel, Marcio Fronza, Valdemar L Junior, Warley S Borges, Eduardo R Cole, Tadeu U Andrade, Denise C Endringer, Dominik Lenz
April-June 2017, 13(50):365-369
DOI:10.4103/0973-1296.210176  PMID:28808407
Objective: This study evaluated in vitro cell viability by the colorimetric MTT stands for 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay compared to image analysis by CellProfiler® software. Materials and Methods: Hepatoma (Hepa-1c1c7) and fibroblast (L929) cells were exposed to isolated substances, camptothecin, lycorine, tazettine, albomaculine, 3-epimacronine, trispheridine, galanthine and Padina gymnospora, Sargassum sp. methanolic extract, and Habranthus itaobinus Ravenna ethyl acetate in different concentrations. After MTT assay, cells were stained with Panotic dye kit. Cell images were obtained with an inverted microscope equipped with a digital camera. The images were analyzed by CellProfiler®. Results: No cytotoxicity at the highest concentration analyzed for 3-epimacronine, albomaculine, galanthine, trispheridine, P. gymnospora extract and Sargassum sp. extract where detected. Tazettine offered cytotoxicity only against the Hepa1c1c7 cell line. Lycorine, camptothecin, and H. itaobinus extract exhibited cytotoxic effects in both cell lines. The viability methods tested were correlated demonstrated by Bland–Atman test with normal distribution with mean difference between the two methods close to zero, bias value 3.0263. The error was within the limits of the confidence intervals and these values had a narrow difference. The correlation between the two methods was demonstrated by the linear regression plotted as R2. Conclusion: CellProfiler® image analysis presented similar results to the MTT assay in the identification of viable cells, and image analysis may assist part of biological analysis procedures. The presented methodology is inexpensive and reproducible. Abbreviations: HPLC: High pressure liquid chromatography MTT: (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide)
  5,891 257 1
Anti-inflammatory potential of Petiveria alliacea on activated RAW264.7 murine macrophages
Rosa Martha Perez Gutierrez, Carlos Hoyo-Vadillo
April-June 2017, 13(50):174-178
DOI:10.4103/pm.pm_479_16  PMID:28808377
Background: Defense and protection to multiple harmful stimuli are the inflammation, when is self-amplified and uncontrolled is the basis of the pathogenesis of a wide variety of inflammatory illness. The aim of this study was to evaluate if Petiveria alliacea could attenuate inflammation in a murine model of RAW264 macrophages the involved model and its involved mechanism. Materials and Methods: The ethanol extract from P. alliacea was precipitated with water and supernatant was used for this study (PW). The anti-inflammatory effects of PW were investigated through evaluating of the production of several cytokines, chemokines, and expression of nuclear factor-kappa B (NF-κB) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Also was determined the ability to decrease the oxidative stress in RAW264.7 cells with carboxy-2',7'-dichloro-dihydro-fluorescein diacetate. Results: PW significantly suppress the secretion of prostaglandin E2, leukotriene C4, interleukin (IL)-1 β, IL-6, IL-10, interferon gamma nitric oxide (NO), inducible NO synthase, IL-1 β, IL-4, in RAW264.7 cells in a dose-dependent manner. In addition, PW also markedly inhibited the transcriptional activity of NF-κB. PW produced significant anti-inflammatory activity through inhibiting the production of inflammatory mediators through the NF-κB inactivation in the LPS-stimulated RAW24.7 cells. Conclusions: PW exerts significant antioxidant and anti-inflammatory activities, and this effect can be attributed in part, to the presence of dibenzyl disulfide, dibenzyl trisulfide pinitol, coumarin, myricetin, glutamyl-S-benzyl cysteine, and petiveriins A and B. Abbreviations used: COX-2: Ciclooxigenasa 2; DCFHDA: Carboxy-2',7'-dichloro-dihydro-fluorescein diacetate; DMEM: Dulbecco's modified eagle's medium; FBS: Fetal bovine serum; HSP70: Heat shock protein; IFN-γ: Interferon gamma; IL-1 β: Interleukin 1 β, IL-6: Interleukin 6; IL-10: Interleukin 10; IL-4: Interleukin 4; iNOS: Nitric oxide synthase; KCl: Potassium chloride; LPS: Lipopolysaccharides; LTC4: leukotriene C 4; MgCl2: Magnesium chloride; MTT: 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide; NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B-cells or transcriptional activity of nuclear factor-kB; NO: Nitric oxide; PBS: Phosphate-buffered saline; PGE2: Prostaglandin E2, PMSF: Phenylmethylsulfonyl fluoride; PTC: Chloroform extract from Petiveria alliacea; PE: Ethanol extract from Petiveria alliacea; PTH: Hexane extract from Petiveria alliacea; PW: Supernatant of PTE precipitated with water; RAW264.7: Cell line murine macrophages; ROS: Reactive oxygen species; TNF-α: Tumor necrosis factor.
  5,202 642 6
Inhibition of cytochrome P450 (CYP3A4) activity by extracts from 57 plants used in traditional chinese medicine (TCM)
Mohamed L Ashour, Fadia S Youssef, Haidy A Gad, Michael Wink
April-June 2017, 13(50):300-308
DOI:10.4103/0973-1296.204561  PMID:28539725
Background: Herbal medicine is widely used all over the world for treating various health disorders. It is employed either alone or in combination with synthetic drugs or plants to be more effective. Objective: The assessment of the effect of both water and methanol extracts of 57 widely used plants from Traditional Chinese Medicine (TCM) against the main phase I metabolizing enzyme CYP3A4 in vitro for the first time. Materials and Methods: The inhibition of cytochrome P450 activity was evaluated using a luminescence assay. The principal component analysis (PCA) was used to correlate the inhibitory activity with the main secondary metabolites present in the plant extracts. Molecular modeling studies on CYP3A4 (PDB ID 4NY4) were carried out with 38 major compounds present in the most active plant extracts to validate the observed inhibitory effect. Results: Aqueous extracts of Acacia catechu, Andrographis paniculata, Arctium lappa, Areca catechu, Bupleurum marginatum, Chrysanthemum indicum, Dysosma versipellis, and Spatholobus suberectus inhibited CYP3A4 is more than 85% (at a dose of 100 μg/mL). The corresponding methanol extracts of A. catechu, A. paniculata, A. catechu, Mahonia bealei, and Sanguisorba officinalis inhibited the enzyme by more than 50%. Molecular modeling studies revealed that two polyphenols, namely hesperidin and rutin, revealed the highest fitting scores in the active sites of the CYP3A4 with binding energies equal to -74.09 and -71.34 kcal/mol, respectively. Conclusion: These results provide evidence that many TCM plants can inhibit CYP3A4, which might cause a potential interference with the metabolism of other concomitantly administered herbs or drugs. Abbreviation used: CHARMm: Chemistry at HARvard Macromolecular Mechanics, CYP: Cytochrome P450, DMSO: Dimethyl Sulfoxide, PCA: Principal Component Analysis, PDB: Protein Data Bank, TCM: Traditional Chinese Medicine
  5,219 423 10
Anti-fatigue effect of green tea polyphenols (-)-Epigallocatechin-3-Gallate (EGCG)
Yu-song Teng, Di Wu
April-June 2017, 13(50):326-331
DOI:10.4103/0973-1296.204546  PMID:28539729
Background: (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant of the green tea polyphenols that exhibit a variety of bioactivities. The objective of this study was to evaluate the anti-fatigue effect of EGCG by forced swimming exercise. Materials and Methods: The mice were divided into one control group and three EGCG-treated groups. The control group was administered with distilled water and EGCG-treated groups were administered with different dose of EGCG (50, 100, and 200 mg/kg) by oral gavage for 28 days. On the last day of experiment, the forced swimming exercise was performed and corresponding biochemical parameters were measured. Results: The data showed that EGCG prolonged exhaustive swimming time, decreasing the levels of blood lactic acid, serum urea nitrogen, serum creatine kinase and malondialdehyde, which were accompanied by corresponding increase in liver and muscle glycogen contents, and superoxide dismutase, catalase, and glutathione peroxidase activities. Conclusions: This study indicated that EGCG had an anti-fatigue effect. Abbreviations used: EGCG: (-)-Epigallocatechin-3-gallate, ROS: reactive oxygen species, BLA: blood lactic acid, SUN: serum urea nitrogen, SOD: superoxide dismutase, GPx: glutathione peroxidase, CAT: catalase, SCK: serum creatine kinase, MDA: malondialdehyde, C: control, LET: Low-dose EGCG-treated, MET: Middle-dose EGCG-treated, HET: High-dose EGCG-treated, GTE: green tea extract.
  4,586 335 9
Wound healing activity of Azadirachta indica A. juss stem bark in mice
Preeti Maan, Kuldeep Singh Yadav, Narayan Prasad Yadav
April-June 2017, 13(50):316-320
DOI:10.4103/0973-1296.210163  PMID:28808399
Background: The paste of stem bark of Azadirachta indica (AI) has been traditionally used on wound and scar for rapid healing in Bundelkhand region of India. Objective: In the present investigation, wound healing potential of different extracts of stem bark of AI was explored in mice model. Materials and Methods: To study the wound healing properties in small animal model, the excision and incision wound models were used and water, ethanol-water (1:1, v/v) and ethanol extracts were applied topically (15% w/w in ointment base). In the excision wound model, wound contraction, hydroxyproline content, DNA content, protein content, and nitric oxide levels were estimated after 14 days of topical treatment along with histopathological examinations. In the incision wound model, wound breaking strength was determined after 10 days of topical application of different extracts of AI. Results: The animals treated with water extract of AI exhibited significant increment in rate of wound contraction (93.39%, P < 0.01), hydroxyproline content (13.31 ± 6.65 mg/g of dry tissue, P < 0.001), DNA content (20.99 ± 0.68 μg/100 mg of tissue, P < 0.01), protein content (100.53 ± 7.88 mg/g of wet tissue, P < 0.01) and nitric oxide level (3.05 ± 0.03 mMol/g of tissue, P < 0.001) as well as in wound breaking strength (289.40 ± 29.45 g, P < 0.01) when compared with vehicle control group which was also supported by histopathological studies. Conclusion: The water extract of stem bark of AI possesses significant wound healing property, validating its traditional use.
  3,690 238 3
In vitro α-amylase and α-glucosidase inhibitory and cytotoxic activities of extracts from Cissus cornifolia planch parts
Talent Chipiti, Mohammed Auwal Ibrahim, Moganavelli Singh, Md. Shahidul Islam
April-June 2017, 13(50):329-333
DOI:10.4103/pm.pm_223_16  PMID:28808401
Context: Hyperglycemia is the hallmark of type 2 diabetes mellitus, and its prevention will go a long way in managing the disease and its associated complications. Reduction of postprandial hyperglycemia through retarding carbohydrates digesting enzymes is one of the major therapeutic approaches used in the management of diabetes. Objective: The aim of the present study was to investigate the antidiabetic and cytotoxic effects of Cissus cornifolia extracts in vitro. Materials and Methods: The α-amylase and α-glucosidase inhibitory activities of ethanolic and aqueous extracts of C. cornifolia root and leaves were investigated when the cytotoxic effects of these extracts were analyzed using MTT assay on human embryonic kidney (HEK 293) cell lines. Results: The root ethanolic extract showed a mild α-amylase inhibitory activity with IC50value of 22.75 ± 1.23 μg/ml, but strong α-glucosidase inhibitory activity with IC50value 2.81 ± 0.97 μg/ml and the aqueous root extract indicated moderate inhibition for both α-amylase and α-glucosidase with IC50values of 33.70 ± 3.75 and 37.48 ± 2.35 μg/ml, respectively. The ethanolic root extract was found nontoxic at tested concentrations on HEK 293 cell lines as confirmed by the MTT assay with 93% cell viability at the highest concentration (200 μg/ml) tested. However, the aqueous extracts (leaf and root) were found cytotoxic at concentrations above 50 μg/ml. Conclusion: Data of this study suggest that the root ethanolic extracts of C. cornifolia possesses moderate α-amylase, but strong α-glucosidase inhibitory activity in vitro and did not show significant cytotoxicity with the tested concentrations. Abbreviations used: alex: Aqueous leaf extract; arex: Aqueous root extract; CC: Cissus cornifolia; DNS: Dinitrosalicylic acid; DMSO: Dimethylsulfoxide; elex: Ethanolic leaf extract; erex: Ethanolic root extract; IDF: International Diabetes Federation; MEM: Minimum essential medium; NIDDM: Noninsulin-dependent diabetes mellitus; pNPG: Para-nitrophenyl glucopyranoside; SD: Standard deviation; T2D: Type 2 diabetes.
  3,733 184 8
Flavonoids isolated from the flowers of Limonium bicolor and their in vitro antitumor evaluation
Jian Chen, Jiehui Teng, Li Ma, Haiying Tong, Bingru Ren, Linshan Wang, Weilin Li
April-June 2017, 13(50):222-225
DOI:10.4103/0973-1296.204566  PMID:28539711
Background: Limonium bicolor, a halophytic species, can grow in saline or saline-alkali soil, is well known as a traditional Chinese medicine. Recently it attracted much attention for its treatment for cancer. Objective: The present study was performed to evaluate this species from the phytochemical standpoint and the possible relationship between the antitumor activity and its natural products. Materials and methods: The chemical constituents from the flowers of L. bicolor were investigated through bioassay-guided fractionation and isolation. All the individual compounds were characterized by spectroscopic analysis and their potential antitumor activity was tested against three different human tumor cell lines by MTT assays. Results: The EtOAc extract was proven as the most potent fraction and further fractionation led to the isolation of 15 natural flavonoids, which were characterized as luteolin (1), acacetin (2), quercetin (3), isorhamnetin (4), kaempferol (5), eriodictyol (6), kaempferol-3-O-α-L-rhamnoside (7), kaempferol-3-O-β-D-glucoside (8), quercetin-3-O-α-L-rhamnoside (9), quercetin-3-O-β-D-glucoside (10), quercetin-3-O-β-D-galactoside (11), myricetin-3-O-α-L-rhamnoside (12), kaempferol-3-O-(6″-O-galloyl)-β-D-glucoside (13), hesperidin (14) and rutin (15). The biotesting results demonstrated that both compounds 1 and 3 showed good cytotoxicity against human colon cancer cells (LOVO). Compound 5 exhibited relative greater growth inhibition against both human breast cancer cells (MCF-7) and osteosarcoma cell lines (U2-OS) at the concentration of 100 μg/mL. Conclusion: On the basis of these findings, the flavonoids were deduced to be potentially responsible for the antitumor activity of L. bicolor. The preliminary structure–activity relationship analysis suggests that the 3-O-glycosylation moiety in natural flavonoids was not essential for the antiproliferative activity on LOVO and U2-OS cells. Abbreviation used: MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, EtOAc: Ethyl acetate; LOVO: human colon cancer; MCF-7: human breast, cancer; U2-OS: human osteosarcoma; 5-FU: 5-Fluorouracil; DMSO: dimethyl sulfoxide, NMR: nuclear magnetic resonance; HR-ESI-MS: high resolution electrospray ionization mass chromatography, HPLC: high performance liquid chromatography, EtOH: ethanol; n-BuOH: n-butanol; CC: column chromatography, TLC: thin layer chromatography; PBS: phosphate-buffered saline.
  3,494 231 8
Anti-quorum sensing activity of Forsythia suspense on Chromobacterium violaceum and Pseudomonas aeruginosa
An Zhang, Wei-Hua Chu
April-June 2017, 13(50):321-325
DOI:10.4103/0973-1296.204547  PMID:28539728
Background: Quorum sensing (QS) plays an important role in the production of virulence factors and pathogenicity in Pseudomonas aeruginosa, and the interruption of QS will be a hopeful pathway to combat bacterial infection. Objective: In this study, we selected Forsythia suspense (Thunb.) Vahl from traditional Chinese herbal medicines for its anti-QS activity. Materials and Methods: Anti-QS of F. suspense extracts (FSE) was monitored using the Chromobacterium violaceum 12472 bioassay. Standard methods were used to investigate the effects of FSE on QS-controlled virulence factors production, swimming motility, and biofilm establishment in P. aeruginosa PAO1. Results: FSE could obviously inhibit the violacein production in C. violaceum 12472 and also could inhibit quorum sensing–regulated virulence factors production and biofilm formation in P. aeruginosa in a concentration-dependent manner. The elastase activity and pyocyanin production were inhibited at a maximum of 40.97 and 47.58% when P. aeruginosa was grown in the presence of 0.25 g/mL FSE, which can also inhibit swimming motility of P. aeruginosa. The biofilm formation ability was decreased about 72.45% when in PAO1 cultured with the 0.25 g/mL FSE. The results suggested that FSE may be used as an alternative drug to control and handle harmful infections caused by bacterial pathogens based on QS inhibition. Abbreviations used: QS: Quorum sensing, Pseudomonas aeruginosa P. aeruginosa, Forsythia suspense F. suspense, FSE: F. suspense extracts, Chromobacterium violaceum 12472 C. violaceum 12472, AIs: autoinducers, AHLs: N-acyl-homoserinelactones, LB: Luria-Bertani, MICs: Minimum inhibitory concentrations, CFU: Colony-Forming Units, ATCC: American Type Culture Collection, PBS: phosphate buffered saline
  3,391 206 5
Anti-inflammatory effects of KOTMIN13: A mixed herbal medicine in LPS-stimulated RAW 264.7 cells and mouse edema models
Eujin Lee, Sun-Gun Kim, Na-Young Park, Hyo-Hyun Park, Kyu-Tae Jeong, Jongkeun Choi, In-Hae Lee, Hwadong Lee, Eunkyung Lee
April-June 2017, 13(50):216-221
DOI:10.4103/0973-1296.204548  PMID:28539710
Background: A Korean herbal medicine, KOTMIN13, composed of Inula japonica Thunberg, Trichosanthes kirilowii Maximowicz var. japonica kitamura, Peucedanum praeruptorum Dunn, and Allium macrostemon Bge, has been used for anti-allergic and anti-asthmatic treatment in oriental clinics, but its activity has not been investigated. Materials and Methods: To evaluate the anti-inflammatory activity of KOTMIN13 for in vitro study, LPS-stimulated RAW 264.7 cells were used to induce the production and expression of inflammatory mediators and its mechanisms. 12-O-Tetradecanoylphorobol-13 aceate (TPA)-induced ear edema and carrageenan-induced paw edema models were also used to evaluate the effect of KOTMIN13 on acute inflammation in vivo. Results: KOTMIN13 reduced the release of inflammatory mediators [nitric oxide, prostaglandin E2, interleukin (IL)-1β, and IL-6] and the protein expression of inducible nitric oxide synthase and cyclooxygenase-2 in LPS-stimulated RAW 264.7 cells. Mechanism studies showed the attenuation of LPS-induced NF-κB activation by KOTMIN13 via IκBα degradation abrogation and a subsequent decrease in nuclear p65 levels. Activation of mitogen-activated protein kinases (ERK, JNK, and p38) was also suppressed. Furthermore, KOTMIN13 ameliorated the development of TPA-induced ear edema and carrageenan-induced paw edema in acute inflammatory edema mouse models. Conclusion: Our study demonstrates that KOTMIN13 inhibits inflammatory mediators through the inhibitions of NF-κB and MAPK activities in LPS-induced RAW 264.7 cells, as well as acute inflammation in edema models, indicating that KOTMIN13 is an effective suppressor for anti-inflammatory activities. Abbreviations used: NO: nitric oxide; PGE2: prostaglandin E2; iNOS: inducible NO synthase; COX-2: cyclooxygenase-2; TNF-α: tumor necrosis factor-α; IL: interleukin; NF-κB: nuclear factor kappaB; MAPK: mitogen-activated protein kinases; ERK: extracellular signal regulated kinase; JNK: c-jun N terminal kinase; TPA: 12-O-tetradecanoylphorbol-13-acetate
  3,341 134 1
Multipathway integrated adjustment mechanism of Glycyrrhiza triterpenes curing gastric ulcer in rats
Ying Wang, Shuai Wang, Yongrui Bao, Tianjiao Li, Xin Chang, Guanlin Yang, Xiansheng Meng
April-June 2017, 13(50):209-215
DOI:10.4103/0973-1296.204550  PMID:28539709
Background: Gastric ulcer is a common chronic disease in human digestive system, which is difficult to cure, easy to relapse, and endangers human health seriously. Compared with western medicine, traditional Chinese medicine has a unique advantage in improving the general situation, stablizing medical condition, and with little side effects. Glycyrrhiza known as “king of all the medicine”, has a range of pharmacological activities and is commonly used in a variety of proprietary Chinese medicines and formulations. Objective: On the basis of explicit antiulcer effect of Glycyrrhiza triterpenes, the molecular mechanisms of its therapeutic effect on acetic acid induced gastric ulcer in rats were explored. Materials and Methods: Acetic acid induced gastric ulcer model in rats was established to evaluate the curing effect of G. triterpenes and all of the rats were randomised into six groups: Control group, model group, omeprazole group (0.8 mg/mL), triterpenes high dose group (378.0 mg/mL), triterpenes middle dose group (126.0 mg/mL), and triterpenes low dose group (42.0 mg/mL). All rats in groups were orally administered the active group solution 1.5 mL once daily (model and control groups with saline) for 7 days. HPLC-TOF-MS analysis method was performed to obtain the plasma metabolites spectrums of control group, model group, triterpenes high, middle and low dose groups. Results: A total of 11 differential endogenous metabolites related to the therapeutic effect of G. triterpenes were identified, including tryptophan, phingosine-1-phosphate, pantothenic acid, and so on, among which tryptophan and phingosine-1-phosphate are related with the calcium signaling pathway and arachidonic acid (AA) metabolism. At the same time, in order to verify the above results, quantitative real time polymerase chain reaction were performed to evaluate the expression of H+-K+-ATPase alpha mRNA and phospholipase a 2 mRNA in relational signaling pathways. Combined with statistical analysis of plasma metabolic spectrum and gene expression in tissue, it is suggested that G. triterpenes has antiulcer effect on gastric ulcer in rats. Conclusion: G. triterpenes has a certain regulating effect on the metabolism of tryptophan, AA, sphingosine, and other endogenous metabolites, and we speculated that the antiulcer potential of G. triterpenes can be primarily attributed to its inhibiting gastric acid secretion, reducing the release of inflammatory mediators, and protecting gastric mucosa effects to prevent the further development of gastric ulcer. Abbreviations used: HP: Helicobacter pylori, ECL: enterochromaffinlike,TCM: Traditional Chinese medicine; HPLC: High Performance Liquid Chromatography, HPLC/MS: High Performance Liquid chromatography Mass Spectrometry, HPLC-TOF-MS: High Performance Liquid Chromatography and Tof Mass Spectrometry, SD: Sprague Dawley, PCDL: Personal Compound Database and Library, MPP: Mass Profiler Professiona; PCA: principal component analysis, RT-PCR: real time polymerase chain reaction, PGE 2: Prostaglandin E2, COX1: cyclooxygenase 1 S1P: Sphingosine-1-phosphate, AA: Arachidonic acid, 5-HT: 5- hydroxytryptamine.
  3,265 135 5
Prevention mechanism of 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-D-glucoside on lipid accumulation in steatosis hepatic L-02 cell
Pei Lin, Jian-Mei Lu, Yan-Fang Wang, Wen Gu, Rong-Hua Zhao, Jie Yu
April-June 2017, 13(50):245-253
DOI:10.4103/0973-1296.204563  PMID:28539716
Aim: 2,3,5,4'-Tetrahydroxy-stilbene-2-O-β-d-glucoside (TSG), a natural stilbene, shows great activities in hepatic lipid regulation, especially for hepatic triglyceride lowering. However, information about its mechanisms on biosynthesis and degradation of triglyceride is still limited. This research pays close attention to clarify the mechanism of TSG on prevention of hepatic lipid accumulation. Materials and Methods: TSG was given to steatosis hepatocyte L-02 cell induced by fat emulsion incubation. The contents of free fatty acid, triglyceride, rate-controlling enzymes, and transcriptional regulatory factors, which play key role in biosynthesis and decomposition of triglyceride, were determined with or without TSG exposure. Results: TSG could reduce the free fatty acid material supply for the synthesis of endogenous triglyceride and it did so by reducing the expression of liver type fatty acid binding protein and fatty acid transport protein 4. TS Ginhibited the expression of sterol regulatory element-binding protein 1c, and then reduce the contents of acetyl-CoA carboxylase 1 and fatty acid synthase. Therefore,TSG prevented biosynthesis of triglyceride. Mean while, TSG also promoted the decomposition of triglyceride by the activation of peroxisome proliferators activator receptors alpha. Conclusion: TSG could effective intervene the accumulation of triglyceride in hepatic cell. Thus, TSG could be considered as a promising drug candidate in prevention and treatment of lipid metabolic disorders, especially nonalcoholic fatty liver disease. Abbreviations used: ACACA: Acetyl-CoA carboxylase 1, Apo-B100: Apo lipoprotein B100, FASN: Fatty acid synthase, FATP4: Fatty acid transport protein 4, FBS: Fetal bovine serum; FEN: Fenofibrate, FFA: Free fatty acid, L-FABP: Liver type fatty acid binding protein, LPL: Lipoprotein lipase, MTTP: Microsomal triglyceride transfer protein, NAFLD: Non-alcoholic fatty liver disease, PBS: Phosphate buffer saline, PPAR-α: Peroxisome proliferators activator receptors alpha, RPMI: Roswell Park Memorial Institute, SIM: Simvastatin, SREBF1c: Sterol regulatory element-binding protein 1c, TG: Triglyceride, TSG: 2, 3, 5, 4-tetrahydroxy-stilbene-2-O-β-Dglucoside, VLDL: Very low density lipoprotein
  3,172 160 8
Antiprotozoal, antibacterial and antidiarrheal properties from the flowers of Chiranthodendron pentadactylon and isolated flavonoids
Fernando Calzada, Teresa Juárez, Normand García-Hernández, Miguel Valdes, Oscar Ávila, Lilian Yepez Mulia, Claudia Velázquez
April-June 2017, 13(50):240-244
DOI:10.4103/0973-1296.204564  PMID:28539715
Background: Chiranthodendron pentadactylon Larreat. (Sterculiaceae) is a Mexican plant used in traditional medicine for the treatment of heart disease symptoms and infectious diarrhea. Objective: To evaluate in vitro antiprotozoal and antibacterial activities and in vivo antidiarrheal activity from the flowers of C. pentadactylon using the extract, fractions, and major isolated flavonoids. Materials and methods: Bioassay-guided fractionation of the methanol extract of C. pentadactylon (MECP) led to the isolation of five flavonoids, tiliroside, astragalin, isoquercitrin, (+)-catechin, and (-)-epicatechin. Antimicrobial activities were tested on two protozoa (Entamoeba histolytica and Giardia lamblia) and nine bacterial enteropathogens (two Escherichia coli strains, two Shigella sonnei strains, two Shigella flexneri strains, two Salmonella sp. strains, and Vibrio cholerae) isolated from feces of children with acute diarrhea or dysentery and resistant to chloramphenicol. Also, antidiarrheal activity was tested on cholera toxin-induced diarrhea in male Balb-c mice. Results: Epicatechin was the most potent antiamoebic and antigiardial compound with IC50 values of 1.9 μg/mL for E. histolytica and 1.6 μg/mL for G. lamblia; tiliroside showed moderate antiprotozoal activity against both protozoan. In contrast, in the antibacterial activity, tiliroside was the most potent compound on all microorganisms with minimum inhibitory concentration values less than 0.7 mg/mL. In the case of cholera toxin-induced diarrhea, epicatechin was the most potent flavonoid with IC50 of 14.7 mg/kg. Conclusion: Epicatechin and tiliroside were the flavonoids responsible for antimicrobial andantidiarrheal activities of C. pentadactylon. Its antiprotozoal, antibacterial, and antidiarrheal properties are in good agreement with the traditional medicinal use of C. pentadactylon for the treatment of infectious diarrhea. Abbreviations used: MECP: Methanol extract of C. pentadactylon
  3,093 202 5
Resolving identification issues of Saraca asoca from its adulterant and commercial samples using phytochemical markers
Satisha Hegde, Harsha Vasudev Hegde, Sunil Satyappa Jalalpure, Malleswara Rao Peram, Sandeep Ramachandra Pai, Subarna Roy
April-June 2017, 13(50):266-272
DOI:10.4103/pm.pm_417_16  PMID:28808391
Saraca asoca (Roxb.) De Wilde (Ashoka) is a highly valued endangered medicinal tree species from Western Ghats of India. Besides treating cardiac and circulatory problems, S. asoca provides immense relief in gynecological disorders. Higher price and demand, in contrast to the smaller population size of the plant, have motivated adulteration with other plants such as Polyalthia longifolia (Sonnerat) Thwaites. The fundamental concerns in quality control of S. asoca arise due to its part of medicinal value (Bark) and the chemical composition. Phytochemical fingerprinting with proper selection of analytical markers is a promising method in addressing quality control issues. In the present study, high-performance liquid chromatography of phenolic compounds (gallic acid, catechin, and epicatechin) coupled to multivariate analysis was used. Five samples each of S. asoca, P. longifolia from two localities alongside five commercial market samples showed evidence of adulteration. Subsequently, multivariate hierarchical cluster analysis and principal component analysis was established to discriminate the adulterants of S. asoca. The proposed method ascertains identification of S. asoca from its putative adulterant P. longifolia and commercial market samples. The data generated may also serve as baseline data to form a quality standard for pharmacopoeias. Abbreviations used: HPLC: High Performance Liquid Chromatography; RP-HPLC: Reverse Phase High Performance Liquid Chromatography; CAT: Catechin; EPI: Epicatechin; GA: Gallic acid; PCA: Principal Component Analysis.
  3,120 141 3
Phytochemical and biological evaluations of Arum hygrophilum boiss. (Araceae)
Fatma U Afifi, Violet Kasabri, Simona Litescu, Ismail F Abaza, Khalid Tawaha
April-June 2017, 13(50):275-280
DOI:10.4103/0973-1296.204551  PMID:28539721
Background: Arum hygrophilum is a traditional medicinal plant indigenous to Jordan. The present study explores its phytochemistry, antioxidative, antidiabesity, and antiproliferative potentialities. Materials and Methods: Column chromatography and HPLC-MS analysis were used for its phytochemical evaluation. Using leaf crude water and ethanol extracts, the antioxidative capacities, their modulation of pancreatic β-cell proliferation, and insulin secretion as well as glucose diffusion and enzymatic bioassays were evaluated. Results: Three flavonoids (luteolin, isoorientin, and vitexin) and β-sitosterol have been isolated and their structures determined. HPLC-MS analysis of the ethanol extract further revealed the presence of caffeic, ferulic, gallic, and rosmarinic acids and quercetine-3-O-rhamnoside. The ethanol extract exhibited DPPH and ABTS radical scavenging and antioxidative capacities. A. hygrophilum (1), vitexin (2), and rosmarinic acid (3) inhibited pancreatic lipase (PL) dose dependently with PL-IC50 (µg/mL) values in an ascending order: (3); 51.28 ± 7.55 < (2); 260.9 ± 21.1 < (1); 1720 ± 10. Comparable to GLP-1-enhanced β-cell proliferation in 2-day treatment wells, a dose-dependent augmentation of BrdU incorporation was obtained with the A. hygrophilum aqueous extract (AE) (0.5 and 1 mg/mL, with respective 1.33- and 1.41-folds, P < 0.001). A. hygrophilum AE was identified as an inhibitor of α-amylase/α-glucosidase with IC50 value of 30.5 ± 2.1 mg/mL but lacked antiproliferative effects in colorectal cancer cell lines (HT29, HCT116, and SW620) and insulinotropic effects in β-cell line MIN6. Conclusion: A. hygrophilum extracts inhibited gastrointestinal enzymes involved in carbohydrate and lipid digestion and absorption. Abbreviations used:ABTS: 2,2'-Azino-Bis-3-Ethylbenzothiazoline-6-Sulfonic Acid, AE: Aqueous Extract, ANOVA: Analysis Of Variance, AUC: Area Under Curve, BrdU: 5-Bromo-2'-Deoxyuridine, DPPH: 2,2-Diphenyl -1-Pycriylhydrazyl, ELISA: Enzyme Linked Immunosorbent Assay, GLP1: Glucagon Like Peptide 1, GSIS: Glucose Stimulated Insulin Secretion, HPLC-MS: High Performance Liquid Chromatography-Mass Spectrometry, IC50: 50% Inhibitory Concentration, KRH: Krebs/Ringer/Hepes, MTT: 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide, OGTT: Oral Glucose Tolerance Test, ORAC: Oxygen Radical Antioxidant Capacity, OSTT: Oral Starch Tolerance Test, PL: Pancreatic Lipase, SEM: Standard Error Of The Mean, SRB: Sulforhodamine B, TEAC: Trolox Equivalent Antioxidant Capacity, TLC: Thin Layer Chromatography
  3,083 159 2
Allium sativum constituents exhibit anti-tubercular activity In vitro and in RAW 264.7 mouse macrophage cells infected with Mycobacterium tuberculosis H37Rv
Swapna S Nair, Sujay S Gaikwad, Savita P Kulkarni, Alka Pravin Mukne
April-June 2017, 13(50):209-215
DOI:10.4103/pm.pm_435_16  PMID:28808382
Background: Long duration of treatment, side-effects of currently used anti-tubercular drugs and emergence of drug-resistant forms of Mycobacterium tuberculosis (MTB) warrants the need to develop new drugs to tackle the scourge of tuberculosis (TB). Garlic is an edible plant reported to have anti-tubercular activity. However, previous researches on anti-tubercular effect of garlic were focused mostly on preliminary in vitro screening. Objective: To identify constituents responsible for anti-tubercular activity of thiosulfinate-derivative rich extract of garlic (GE) and to evaluate activity of the most active constituent in RAW 264.7 mouse macrophage cells infected with M. tuberculosis H37Rv (MTBH). Materials and Methods: In the present study, we have isolated eight compounds from GE by flash chromatography. The isolated compounds were characterized by 1H nuclear magnetic resonance spectroscopy, liquid chromatography-mass spectrometry and Fourier transform infrared spectroscopy. Individual isolates and GE were screened for activity against MTBH by Resazurin Microtitre Plate Assay (REMA). Results: Anti-tubercular activity of GE was superior to that of isolates when evaluated by REMA, possibly due to synergism amongst the constituents of GE. Cytotoxicity of GE was evaluated in RAW 264.7 mouse macrophage cells and it was observed that GE had a favorable selectivity index (>10). Therefore, anti-tubercular activity of GE was further evaluated by intracellular macrophage infection model. GE demonstrated concentration-dependent activity in macrophages infected with MTBH. Conclusion: This is the first report on intracellular anti-tubercular activity of any extract of garlic or its components. Appreciable intracellular anti-tubercular activity of GE in macrophages combined with low cytotoxicity makes it a suitable candidate for further development as an anti-tubercular agent. Abbreviations used: TB: Tuberculosis, MTB: Mycobacterium tuberculosis, MTBH: Mycobacterium tuberculosis H37Rv, GE: Thiosulfinate-derivative rich extract of garlic, REMA: Resazurin Microtitre Plate Assay, VD: Vinyldithiin, CFU: Colony forming unit, 1H NMR: 1H nuclear magnetic resonance spectroscopy, FT-IR: Fourier transform-infrared spectroscopy, LC-MS: Liquid chromatography-mass spectrometry, IC50: Concentration required to inhibit the cells by 50%, ANOVA: Analysis of variance.
  2,911 202 1
Evaluation of herb–drug interactions of Hovenia dulcis fruit extracts
Jong Suk Park, Shaheed Ur Rehman, In Sook Kim, Min Sun Choi, Chun-Soo Na, Hye Hyun Yoo
April-June 2017, 13(50):236-239
DOI:10.4103/0973-1296.204552  PMID:28539714
Background: Hovenia dulcis (Rhamnaceae) fruits are popularly used as herbal medicines or dietary supplements in Asian countries due to functions such as liver protection and detoxification from alcohol poisoning. Accordingly, it is very likely for dietary supplemental products, including H. dulcis fruit extracts, to be taken with prescription drugs. Objective: In this study, possible food–drug interactions involving H. dulcis fruit extracts were evaluated based on the inhibition of cytochrome P450 (CYP) enzyme activity. Material and Methods: The water extract of H. dulcis fruit extracts was incubated in human liver microsomes with CYP-specific substrates. The formation of the CYP-specific metabolites was measured using liquid chromatography-tandem mass spectrometry. Results: H. dulcis fruit extracts showed negligible effects on seven CYP isozyme activities at all concentrations tested. Conclusion: This result suggests that H. dulcis fruit extracts may have minimal pharmacokinetic interactions with coadministered drugs through the modulation of CYP enzymes. Abbreviations Used: CYP: cytochrome P450 enzymes, HPLC: High performance liquid chromatography, LC-MS/MS : liquid chromatography-tandem mass spectrometry, MRM: multiple-reaction monitoring
  2,925 152 3
Near-infrared spectroscopy as a process analytical technology tool for monitoring the parching process of traditional chinese medicine based on two kinds of chemical indicators
Kaiyue Li, Weiying Wang, Yanping Liu, Su Jiang, Guo Huang, Liming Ye
April-June 2017, 13(50):332-337
DOI:10.4103/pm.pm_416_16  PMID:28539730
Background: The active ingredients and thus pharmacological efficacy of traditional Chinese medicine (TCM) at different degrees of parching process vary greatly. Objective: Near-infrared spectroscopy (NIR) was used to develop a new method for rapid online analysis of TCM parching process, using two kinds of chemical indicators (5-(hydroxymethyl) furfural [5-HMF] content and 420 nm absorbance) as reference values which were obviously observed and changed in most TCM parching process. Materials and Methods: Three representative TCMs, Areca (Areca catechu L.), Malt (Hordeum Vulgare L.), and Hawthorn (Crataegus pinnatifida Bge.), were used in this study. With partial least squares regression, calibration models of NIR were generated based on two kinds of reference values, i.e. 5-HMF contents measured by high-performance liquid chromatography (HPLC) and 420 nm absorbance measured by ultraviolet–visible spectroscopy (UV/Vis), respectively. Results: In the optimized models for 5-HMF, the root mean square errors of prediction (RMSEP) for Areca, Malt, and Hawthorn was 0.0192, 0.0301, and 0.2600 and correlation coefficients (Rcal) were 99.86%, 99.88%, and 99.88%, respectively. Moreover, in the optimized models using 420 nm absorbance as reference values, the RMSEP for Areca, Malt, and Hawthorn was 0.0229, 0.0096, and 0.0409 and Rcalwere 99.69%, 99.81%, and 99.62%, respectively. Conclusions: NIR models with 5-HMF content and 420 nm absorbance as reference values can rapidly and effectively identify three kinds of TCM in different parching processes. This method has great promise to replace current subjective color judgment and time-consuming HPLC or UV/Vis methods and is suitable for rapid online analysis and quality control in TCM industrial manufacturing process. Abbreviations used: NIR: Near-infrared Spectroscopy; TCM: Traditional Chinese medicine; Areca: Areca catechu L.; Hawthorn: Crataegus pinnatifida Bge.; Malt: Hordeum vulgare L.; 5-HMF: 5-(hydroxymethyl) furfural; PLS: Partial least squares; D: Dimension faction; SLS: Straight line subtraction, MSC: Multiplicative scatter correction; VN: Vector normalization; RMSECV: Root mean square errors of cross-validation; RMSEP: Root mean square errors of validation; Rcal: Correlation coefficients; RPD: Residual predictive deviation; PAT: Process analytical technology; FDA: Food and Drug Administration; ICH: International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use.
  2,928 121 3
Novel approaches to extraction methods in recovery of capsaicin from habanero pepper (CNPH 15.192)
Frederico S Martins, Leonardo L Borges, Claudia S. C. Ribeiro, Francisco J. B. Reifschneider, Edemilson C Conceição
April-June 2017, 13(50):375-379
DOI:10.4103/0973-1296.210127  PMID:28808409
Introduction: The objective of this study was to compare three capsaicin extraction methods: Shoxlet, Ultrasound-assisted Extraction (UAE), and Shaker-assisted Extraction (SAE) from Habanero pepper, CNPH 15.192. Materials and Methods: The different parameters evaluated were alcohol degree, time extraction, and solid–solvent ratio using response surface methodology (RSM). Results: The three parameters found significant (p < 0.05) were for UAE and solvent concentration and extraction time for SAE. The optimum conditions for the capsaicin UAE and SAE were similar 95% alcohol degree, 30 minutes and solid–liquid ratio 2 mg/mL. The Soxhlet increased the extraction in 10–25%; however, long extraction times (45 minutes) degraded 2% capsaicin. Conclusion: The extraction of capsaicin was influenced by extraction method and by the operating conditions chosen. The optimized conditions provided savings of time, solvent, and herbal material. Prudent choice of the extraction method is essential to ensure optimal yield of extract, thereby making the study relevant and the knowledge gained useful for further exploitation and application of this resource. Abbreviations used: Nomenclature UAE: Ultrasound-assisted Extraction; SAE: Shaker-assisted Extraction.
  2,782 221 4
Effect of Helix aspersa extract on TNFα, NF-κB and some tumor suppressor genes in breast cancer cell line Hs578T
Ibtissem El Ouar, Cornelia Braicu, Dalila Naimi, Alexendru Irimie, Ioana Berindan-Neagoe
April-June 2017, 13(50):281-285
DOI:10.4103/0973-1296.204618  PMID:28539722
Background: The garden snail, Helix aspersa, is a big land snail widely found in the Mediterranean countries. It is one of the most consumed species and widely used in zootherapy. Objective: The present study was carried out to investigate for the first time the first time the antitumor activity of an aqueous extract from Helix aspersa. Materials and Methods: The effect of H. aspersa extract was studied on a triple negative breast cancer cell line Hs578T. Firstly, the morphological changes and the mode of cell death induced by the extract have been evaluated by microscopy and acridine orange/ethidium bromide staining. The effect of the extract at dilution 0.1% and 1% was then tested on some genes, regulators of cell death and proliferation like tumor necrosis factor α (TNFα), NF- κB, and the tumor suppressor genes P53 and PTEN. Results: Data demonstrate that the extract induces necrosis in tumor cells. It enhances significantly the expression of TNFα; mRNA levels were 20 and 10 times more important in treated cells compared to nontreated cells. NF-κB and PTEN were inhibited with the dilution 1% after 8 and 24 hours of treatment. P53 expression was further inhibited but only with the highest dose, after 4, 8, and 24 hours. Conclusion: Our results show that H. aspersa extract has an antitumor activity against Hs578T cells; it is a potent stimulator for TNFα and a good inhibitor for NF-κB. Abbreviations used: AO: acridine orange; Bcl-2: B cell lymphoma 2. cDNA: complementary DNA; ELISA: enzyme linked immunosorbent assay; EB: ethidium bromide; IC50: the half maximal inhibitory concentration; mRNA: messenger RNA. MAPK: mitogen-activated protein kinase; NF-κB: nuclearfactorkappa B; PBS: phosphate buffered saline. PI3K: phospho-inositol 3 kinase; PTEN: phosphatase and tensin homolog; ROS: reactive oxygen species. RT-PCR: reverse transcription polymerase chain reaction; TNFα: tumor necrosis factor alpha. TNFR1: TNF receptor-1; TP53: tumor protein 53
  2,833 143 6
Bioassay-guided isolation and identification of antioxidant flavonoids from Cyclotrichium origanifolium (Labill.) manden and scheng
Abdussamat Guzel, Huseyin Aksit, Mahfuz Elmastas, Ramazan Erenler
April-June 2017, 13(50):316-320
DOI:10.4103/0973-1296.204556  PMID:28539727
Background: Medicinal and aromatic plants play a significant role in drug discovery and development process. Flavonoids, revealing a wide spectrum of biological activities, extensively found in plants are important secondary metabolites. Materials and Methods: Aerial parts of Cyclotrichium origanifolium were collected, dried, and boiled in water then extracted with hexane, ethyl acetate, and n-butanol. Total phenolic content, DPPH· scavenging activity, reducing power (FRAP) activity, and ABTS·+ scavenging activity assays were applied for all extracts. The ethyl acetate extract revealing the most antioxidant activity as well as including the highest phenolic contents was subjected to chromatographic techniques (column chromatography, sephadex LH-20, semipreparative HPLC) to isolate the active compounds. The structure of isolated compounds were elucidated by spectroscopic methods (1D NMR, 2D NMR, and LC-TOF/MS). Results: Isosakuranetin (1), eriodictyol (2), luteolin (3), naringenin (4), and apigenin (5) were isolated and identified. All isolated flavonoids displayed the excellent antioxidant activity. Conclusion: The isolated flavonoids and also plant extract have potency to be a natural antioxidant. Abbreviations used: DPPH•: 1,1-diphenyl-2-picryl-hydrazyl free radical, ABTS•+: 2,2•-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), UV:Ultraviolet, DNA: Deoxyribonucleic acid, BHT: Butylated hydroxytoluene, BHA: Butylated hydroxyanisole, HPLC: High performance liquid chromatography
  2,761 175 10
Ultrasound-assisted extraction of ursolic acid from the flowers of Ixora coccinia linn (Rubiaceae) and antiproliferative activity of ursolic acid and synthesized derivatives
Silvana Amadeu Ferreira Alves Monteath, Maria Aparecida M Maciel, Raquel Garcia Vega, Heloisa de Mello, Carollina de Araújo Martins, Andressa Esteves-Souza, Cerli Rocha Gattass, Aurea Echevarria
April-June 2017, 13(50):265-269
DOI:10.4103/0973-1296.204557  PMID:28539719
Background: Ixora coccinea Linn (Rubiaceae) is an evergreen shrub with bright scarlet colored flowers found in several tropical and subtropical countries. It is used as an ornamental and medicinal plant. Phytochemical studies revealed that its major special metabolites are triterpene acids, such as ursolic and oleanolic acid. Objective: To evaluate the isolation of ursolic acid (UA) (1) from methanol extracts of I. coccinea flowers through two methodologies, to prepare four derivatives, and to evaluate the cytotoxic effect against six cancer cell lines. Materials and Methods: The UA was isolated from vegetal material by percolation at room temperature and by ultrasound-assisted extraction. The preparation of derivatives was performed according to literature methods, and the cytotoxic effects were evaluated using the MTT (3,4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide) assay. Results: The most efficient extraction was achieved through ultrasound irradiation with a yield of 35% after KOH-impregnated silica in chromatography column. Furthermore, four derivatives (3, 5, 6, 7) of UA were prepared and evaluated, including 1, against two lung cancer (A549 and H460) and four leukemia (K562, Lucena, HL60, and Jurkat) cell lines. Generally, results showed that 1 and 7 were the most active compounds against the assayed cell lines. Also, the cytotoxic effects observed on terpenes 1 and 7 were higher when compared with cisplatin, used as positive control, with the exception of Jurkat cell line. Conclusion: The efficiency of such an alternative extraction method led to the principal and abundant active component, 1, of I. coccinea, thus representing a considerable contribution for promising triterpenoid in cancer chemotherapy. Abbreviations used: MTT: 3,4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, RP: reverse phase, TLC: thin layer chromatography, KOH: potassium hydroxide, IR: infrared, DMF: dimethylformamide, DMSO: dimethyl sulfoxide, TEA: triethylamine, RT: room temperature, EtOAc: ethyl acetate, MeOH: methanol, i-PrOH: iso-propanol, NMR: nuclear magnetic resonance, MDR: multiple drug resistance, RPMI: Roswell Park Memorial Institute
  2,778 131 3
Comparison of ultrasound-assisted extraction and dynamic maceration over content of tagitinin C obtained from Tithonia diversifolia (Hemsl.) A. gray leaves using factorial design
Aline M. R. Silva, Nayara L. O. Ferreira, Anselmo E Oliveira, Leonardo L Borges, Edemilson C Conceição
April-June 2017, 13(50):270-274
DOI:10.4103/0973-1296.204555  PMID:28539720
Background:Tithonia diversifolia belongs to the Asteraceae family. The leaves of T. diversifolia have been studied lately because of the presence of tagitinin C. Objective: Looking for an easy and inexpensive method to extract tagitinin C from T. diversifolia leaves, this work aims to conduct a screening to evaluate the influence of different experimental factors using the dynamic maceration and ultrasound-assisted extraction methods with 23 factorial design based on response surface methodology in enhancing this chemical marker extraction. Materials and Methods: The experimental factors were: extraction time (ET) of 30 and 60 minutes, solid: liquid ratio (SLR) of 5 and 10 grams/grams and ethanolic strength (ES) 48 and 96% (w/w). The experiments were done tripled. The content of tagitinin C in each produced extract was quantified by HPLC method. Results: The highest concentrations of tagitinin C obtained under the experimental design were 0.53 mg/mL and 0.71 mg/mL, respectively for dynamic maceration (DM) and ultrasound-assisted extraction (UAE) from Tithonia diversifolia powdered leaves. For the UAE method, the main parameter for higher contents of tagitinin C was the solid: liquid ratio, followed by the ethanolic strength, and the extraction time was not significant for this method. As for the DM method, all the parameters (SLR, ES, and ET) were significant for a higher content of tagitinin C. Conclusion: Based on the obtained results, it was revealed that the ultrasound-assisted extraction was more effective than dynamic maceration for tagitinin C extraction from T. diversifolia powdered leaves. Abbreviation used: DME: dynamic maceration extraction, UAE: ultrasound-assisted extraction, ET: extraction time, ES: ethanolic strength, SLR: solid:liquid ratio, Tag C: tagitinin C, HPLC: high-performance liquid chromatography.
  2,684 135 4
Rutamarin, an active constituent from Ruta angustifolia Pers., induced apoptotic cell death in the HT29 colon adenocarcinoma cell line
Shafinah Ahmad Suhaimi, Sok Lai Hong, Sri Nurestri Abdul Malek
April-June 2017, 13(50):179-188
DOI:10.4103/pm.pm_432_16  PMID:28808378
Background: Ruta angustifolia Pers. is a perennial herb that is cultivated worldwide, including Southeast Asia, for the treatment of various diseases as traditional medicine. Objective: The purpose of the study was to identify an active principle of R. angustifolia and to investigate its effect on the HT29 cell death. Materials and Methods: The methanol and fractionated extracts (hexane, chloroform, ethyl acetate, and water) of R. angustifolia Pers. were initially investigated for their cytotoxic activity against two human carcinoma cell lines (MCF7 and HT29) and a normal human colon fibroblast cell line (CCD-18Co) using sulforhodamine B cytotoxicity assay. Eight compounds including rutamarin were isolated from the active chloroform extract and evaluated for their cytotoxic activity against HT29 human colon carcinoma cell line and CCD-18Co noncancer cells. Further studies on the induction of apoptosis such as morphological examinations, biochemical analyses, cell cycle analysis, and caspase activation assay were conducted in rutamarin-treated HT29 cells. Results: Rutamarin exhibited remarkable cytotoxic activity against HT29 cells (IC50value of 5.6 μM) but was not toxic to CCD-18Co cells. The morphological and biochemical hallmarks of apoptosis including activation of caspases 3, 8, and 9 were observed in rutamarin-treated HT29 cells. These may be associated with cell cycle arrest at the G0/G1 and G2/M checkpoints, which was also observed in HT29 cells. Conclusions: The present study describes rutamarin-induced apoptosis in the HT29 cell line for the first time and suggests that rutamarin has the potential to be developed as an anticancer agent. Abbreviations used: ACN: Acetonitrile, ANOVA: One-way analysis of variance, BrdU: Bromodeoxyuridine, 13C-NMR: Carbon-13 Nuclear magnetic resonance, CAD: Caspase-activated endonuclease, CCD-18Co: Human colon normal, DLD1: Human Duke's type C colorectal adenocarcinoma, DMRT: Duncan's multiple range test, DMSO: Dimethyl sulfoxide, DNA: Deoxyribonucleic acid, DR4/5: Death receptor 4/5 protein, EMEM: Eagle's minimum essential media, FBS: Fetal bovine serum, FITC Annexin V: Annexin V conjugated with fluorescein isothiocyanate, FITC-DEVD-FMK: Fluorescein isothiocyanate conjugate of caspase inhibitor Asp-Glu-Val-Asp-fluoromethyl ketone, FITC-IETD-FMK: Fluorescein isothiocyanate conjugate of caspase inhibitor Ile-Glu-Thr-Asp-fluoromethyl ketone, FITC-LEHD-FMK: Fluorescein isothiocyanate conjugate of caspase inhibitor Leu-Glu-His-Asp-fluoromethyl ketone, G0: Quiescent phase of cell cycle, G1: Gap 1 phase of cell cycle, G2: Gap 2 phase of cell cycle, GC-MS: Gas chromatography-mass spectrometry, HeLa: Human cervical adenocarcinoma, HPLC: High performance liquid chromatography, HT29: Human colon adenocarcinoma, Huh7.5: Human hepatocellular carcinoma, IC50: Half maximal inhibitory concentration, KSHV: Kaposi's sarcoma-associated herpesvirus, M phase: Mitotic phase of cell cycle, MCF7: Human breast adenocarcinoma, NMR: Nuclear magnetic resonance, PBS: Phosphate-buffered saline, PI: Propidium iodide, RNase: Ribonuclease, rt: Retention time, S phase: Synthesis phase of cell cycle, SD: Standard deviation, SRB: Sulforhodamine B, TCA: Trichloroacetic acid, TLC: Thin layer chromatography, TNF-R1: Tumor necrosis factor receptor 1 protein, TUNEL: Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling, UV: Ultraviolet.
  2,661 141 6
Mechanism of action of isolated caffeic acid and epicatechin 3-gallate from Euphorbia hirta against Pseudomonas aeruginosa
Shanmugapriya Perumal, Roziahanim Mahmud, Sabariah Ismail
April-June 2017, 13(50):311-315
DOI:10.4103/pm.pm_309_15  PMID:28808398
Background: The escalating dominance of resistant Pseudomonas aeruginosa strains as infectious pathogen had urged the researchers to look for alternative and complementary drugs. Objective: The objective of this study is to address the biological targets and probable mechanisms of action underlying the potent antibacterial effect of the isolated compounds from Euphorbia hirta (L.) against P. aeruginosa. Materials and Methods: The action mechanisms of caffeic acid (CA) and epicatechin 3-gallate (ECG) on P. aeruginosa cells were investigated by several bacterial physiological manifestations involving outer membrane permeabilization, intracellular potassium ion efflux, and nucleotide leakage. Results: The findings revealed that ECG and CA targeted both cell wall and cytoplasmic membrane of P. aeruginosa. The cellular membrane destruction and ensuing membrane permeability perturbation of P. aeruginosa had led to the ascending access of hydrophobic antibiotics, release of potassium ions, and leakages of nucleotides. Conclusion: The overall study concludes that ECG and CA isolated from E. hirta possess remarkable anti-infective potentials which can be exploited as drug template for the development of new antibacterial agent against resistant P. aeruginosa pathogen. Abbreviations used: ECG: Epicatechin 3-gallate; CA: Caffeic acid; E. hirta: Euphoria hirta.
  2,622 175 9
In vitro inhibitory effects of Andrographis paniculata, Gynura procumbens, Ficus deltoidea, and Curcuma xanthorrhiza extracts and constituents on human liver glucuronidation activity
Zulhilmi Husni, Sabariah Ismail, Mohd Halimhilmi Zulkiffli, Atiqah Afandi, Munirah Haron
April-June 2017, 13(50):236-243
DOI:10.4103/pm.pm_299_16  PMID:28808386
Background: Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza are commonly consumed as herbal medicines. However their effects on human liver glucuronidation activity are not yet evaluated. Objective: In this study, we evaluate the inhibitory Effects of Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza extracts and their constituents on human liver glucuronidation activity. Materials and Methods: Herbal extracts (aqueous, methanolic and ethanolic extracts) and their constituents were incubated with human liver microsomes with the addition of UDPGA to initiate the reaction. Working concentrations of herbal extracts and their constituents ranged from 10 μg/mL to 1000 μg/mL and 10 μM to 300 μM respectively. IC50 was determined by monitoring the decrement of glucuronidation activity with the increment of herbal extracts or phytochemical constituent's concentrations. Results: All herbal extracts inhibited human liver glucuronidation activity in range of 34.69 μg/mL to 398.10 μg/mL whereas for the constituents, only xanthorrhizol and curcumin (constituents of Curcuma xanthorrhiza) inhibited human liver glucuronidation activity with IC50 of 538.50 and 32.26 μM respectively. Conclusion: In the present study, we have proved the capabilities of Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza to interfere with in vitro glucuronidation process in human liver microsomes. Abbreviations used: UGT: Uridine 5'-diphospho-glucuronosyltransferase; 4-MU: 4-methylumbelliferone; IC50: Half Maximal Inhibitory Concentration; Km: Michaelis constant; Vmax: Maximum velocity.
  2,622 146 -
Immunomodulatory, cytotoxicity, and antioxidant activities of roots of Ziziphus mauritiana
Samina Afzal, Murium Batool, Bashir Ahmad Ch, Ashfaq Ahmad, Muhammad Uzair, Khurram Afzal
April-June 2017, 13(50):262-265
DOI:10.4103/pm.pm_398_16  PMID:28808390
Aims: The study is conducted to evaluate the immunomodulatory, cytotoxicity, and antioxidant potential of Ziziphus mauritiana (Rhamnaceae). Phytochemical analysis of Z. mauritiana revealed the presence of alkaloids, anthraquinone glycoside, cardiac glycoside, saponin, tannin, and flavonoids. Methodology: The cytotoxicity of the plant Z. mauritiana was evaluated by brine shrimp lethality test. Antioxidant parameters such as superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and malondialdehyde (MDA) levels were calculated in the plasma of rats after chronic administration of 400 mg/kg of Z. mauritiana for 6 weeks. Results: The dichloromethane extract of the plant exhibited significant immunomodulatory activity, with inhibitory concentration 50% of 55.43 ± 7.9. The dichloromethane extracts of the plant showed 70% mortality at concentration 1000 μg/ml. SOD and T-AOC levels were increased while MDA level in the plasma was reduced in the plasma of rats treated with dichloromethane Z. mauritiana. Conclusion: This can be deduced that the root of Z. mauritiana has immunomodulatory, cytotoxic, and antioxidant potential. Abbreviations used: SOD: Superoxide dismutase; T-AOC: Total antioxidant capacity; MDA: Malondialdehyde; ZMRD: Z. mauritiana root extract of dichloromethane fraction; LD50: Z. mauritiana root extract of methanol fraction ZMRM, lethal dose 50.
  2,526 215 2
Caspase-mediated apoptotic effects of Ebenus boissieri barbey extracts on human cervical cancer cell line hela
Ece Simsek, Nilufer Imir, Esra Arslan Aydemir, Ramazan Suleyman Gokturk, Erdem Yesilada, Kayahan Fiskin
April-June 2017, 13(50):254-259
DOI:10.4103/0973-1296.204560  PMID:28539717
Background: Ebenus boissieri Barbey is an Antalya, Turkey-endemic plant belonging to Fabaceae family. The aerial parts and the roots of E. boissieri Barbey were used in this study. Objective: In the present study, we have examined the apoptotic effects of hydroalcoholic extracts of E. boissieri Barbey in human cervical cancer cell line HeLa. Materials and Methods: To determine the cytotoxic effect, cells were treated with various concentrations of extracts for 24, 48, and 72 h incubation periods. Cytotoxic effects were examined by Cell Titer 96 aqueous nonradioactive cell proliferation assay and the results were corrected by live/dead viability/cytotoxicity assay and trypan blue exclusion assay. Apoptotic effects were studied with multicaspase kit. Tumor necrosis factor-alpha (TNF-α) and interferon gamma (IFN-γ) release were also measured by enzyme-linked immunosorbent assay. Results: According to the results, E. boissieri Barbey extract caused significant increase in caspase levels. Thus, we suggest that the extract induces cells to undergo apoptosis. Especially, there was a sharp induction in caspase-3 activity. Levels of both TNF-α and IFN-γ in extract-treated groups were significantly and dose dependently exalted as compared to their relative controls. Conclusion: The effects of the extract on caspase-3, TNF-α, and IFN-γ levels mediate the plausible mechanism of apoptosis induction in HeLa. To the best of our knowledge, this is the first report indicating any pharmacological properties of E. Boissieri on HeLa cells. Abbreviations used: Tumor necrosis factor-alpha (TNF-α); Interferon gamma (IFN-γ); 3-(4, 5 dimethylthiazol-2-yl)-5-(3- carboxymethoxy-phenyl)-2-(4-sulfonyl)-2H-tetrazolium (MTS); Phosphate-Buffered Saline (PBS); Fetal Bovine Serum (FBS); para-Nitroanilin pNA; Enzyme-Linked ImmunoSorbent Assay (ELISA); Sodium Dodesyl sulphate –Polyacrilamide gel electrophoresis (SDS-PAGE); Tris-Buffered Saline (TBS); Hydocloric acid (HCl); Standart Error of Mean (SEM); National Cancer Institute (NCI); half maximal inhibitory concentration (IC50)
  2,641 90 -
Isolation of abscisic acid from Korean acacia honey with anti-Helicobacter pylori activity
SeGun Kim, InPyo Hong, SoonOk Woo, HyeRi Jang, SokCheon Pak, SangMi Han
April-June 2017, 13(50):170-173
DOI:10.4103/0973-1296.210166  PMID:28808376
Background: Helicobacter pylori (H. pylori) is linked to the development of the majority of peptic ulcers and some types of gastric cancers, and its antibiotic resistance is currently found worldwide. Objective: This study is aimed at evaluating the anti-H. pylori activity of Korean acacia honey and isolating the related active components using organic solvents. Material and Methods: The crude acacia honey was extracted with n-hexane, dichloromethane, ethyl acetate (EtOAc), and n-butanol. The EtOAc extract was subjected to octadecyl-silica chromatography. The extracts and fractions were then examined for anti-H. pylori activity using the agar well diffusion method. The antimicrobial activity of abscisic acid against H. pylori was investigated by determining the minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), and by performing a time-kill assay. Results: Abscisic acid related to the botanical origins of acacia honey from Korea has been analyzed using ultra-performance liquid chromatography. The MICs and MBCs of abscisic acid were 2.7 ± 1.3 and 6.9 ± 1.9 μg/mL, respectively. The bactericidal activity of abscisic acid (at 10.8 μg/mL corresponding to 4 × MIC) killed the organism within 36–72 h. These results suggest that abscisic acid isolated from Korean acacia honey has antibacterial activity against H. pylori. Conclusion: Abscisic acid isolated from Korean acacia honey can be therapeutic and may be further exploited as a potential lead candidate for the development of treatments for H. pylori-induced infections. Abbreviations used: MeOH: Methanol; EtOAc: Ethyl acetate; TSB: Trypticase soy broth; MIC: Minimum inhibitory concentration; MBC: Minimum bactericidal concentration; CFU: Colony-forming units; UPLC: Ultra-performance liquid chromatography; DAD: Diode array detector; UV: Ultraviolet; ODS: Octadecyl-silica; MS: Mass spectrometry; SE: Standard error.
  2,568 153 6
Antimicrobial and anti-inflammatory effects of ethanol extract of Corylopsis coreana uyeki flos
Da-Eon Park, In-Soo Yoon, Jung-Eun Kim, Ji-Hye Seo, Jin-Cheol Yoo, Chun-Sik Bae, Chang-Dai Lee, Dae-Hun Park, Seung-Sik Cho
April-June 2017, 13(50):286-292
DOI:10.4103/0973-1296.204554  PMID:28539723
Background: Corylopsis coreana Uyeki (Hamamelidaceae) is a medicinal plant cultivated in Northeast Asia. Previously, we have reported that an ethanol extract of Corylopsis coreana Uyeki flos (ECCF) contains four active compounds with antioxidant activity. Objective: The aim of this study was to investigate the antimicrobial spectrum against infectious bacteria and anti-inflammatory effect of ECCF in a mouse model of acute local inflammation. Materials and Methods: In vitro antimicrobial susceptibility was evaluated using standard plate assay technique. Antimicrobial activities (minimum inhibitory concentration, MIC; μg/mL) were determined with the serial dilution method. In vivo anti-inflammatory activity was studied using a mouse model of carrageenan-induced air pouch inflammation. Results: The ECCF showed antimicrobial activities against general bacteria and drug-resistant bacteria including Staphylococcus aureus, Micrococcus luteus ATCC 9341, Mycrobacterium smegmatis ATCC 9341, Mycrobacterium smegmatis ATCC 9341, Salmonella typhimrium KCTC 1925, and nine methicillin-resistant Staphylococcus aureus strains, with MIC values ranging from 250 to 1000 μg/mL. In in vivo mouse model, inflammatory morphologic changes observed in the air pouch membrane were restored to its normal condition by the ECCF treatment. Moreover, the ECCF significantly reduced exudate volumes, protein contents, inflammatory cell counts, and pro-inflammatory cytokine levels in the exudates recovered from air pouches of the mouse model. Flavonoids in the ECCF were found to contain bergenin, quercitrin, and quercetin with reported anti-inflammatory activity via suppressing tumor necrosis factor-α production. Conclusion: To the best of our knowledge, this is the first report to demonstrate the antimicrobial and anti-inflammatory activities of ECCF. Our results suggest that the ECCF might potentially serve as an alternative or complementary medicine for treating inflammatory diseases caused by microbial infection. Abbreviations used: Corylopsis coreana CCF: Uyeki flos, ECCF: ethanol extract of CCF
  2,567 106 3
Induction of apoptosis and cell cycle arrest by flavokawain C on HT-29 human colon adenocarcinoma via enhancement of reactive oxygen species generation, upregulation of p21, p27, and Gadd153, and inactivation of inhibitor of apoptosis proteins
Chung-Weng Phang, Saiful Anuar Karsani, Sri Nurestri Abd Malek
April-June 2017, 13(50):321-328
DOI:10.4103/0973-1296.210180  PMID:28808400
Chalcones have been shown to exhibit anti-cancer properties by targeting multiple molecular pathways. It was, therefore, of interest to investigate flavokawain C (FKC), a naturally occurring chalcone, which can be isolated from Kava (Piper methysticum Forst) root extract. The aim of this study was to investigate the inhibitory effect of FKC on the growth of HT-29 cells and its underlying mechanism of action. Cell viability of HT-29 cells was assessed by Sulforhodamine B assay after FKC treatment. Induction of apoptosis was examined by established morphological and biochemical assays. ROS generation was determined by dichlorofluorescein fluorescence staining, and superoxide dismutase activity was measured using the spectrophotometric method. Western blotting was used to examine the changes in the protein levels. FKC markedly decreased the cell viability of HT-29 cells and the cells showed dramatic changes in cellular and nuclear morphologies with typical apoptotic features. The induction of apoptosis correlated well with the externalization of phosphatidylserine, DNA fragmentation, decreased mitochondrial membrane potential, activation of caspases, and PARP cleavage. This was associated with an increase in reactive oxygen species and a decrease in SOD activity. The protein levels of XIAP, c-IAP1, and c-IAP2 were downregulated, whereas the GADD153 was upregulated after FKC treatment. FKC induced cell cycle arrest at the G1 and G2/M phases via upregulation of p21 and p27 in a p53-independent manner. Our results provide evidence that FKC has the potential to be developed into chemotherapeutic drug for the treatment of colon adenocarcinoma. Abbreviations used: FKC: Flavokawain C; SRB: Sulforhodamine B; ROS: Reactive oxygen species; SOD: Superoxide dismutase; PARP: Poly(ADP-ribose) polymerase ; ER: Endoplasmic reticulum; IAPs: Inhibitor of apoptosis proteins; TUNEL: Transferase dUTP nick end labeling; Annexin V-FITC: Annexin V conjugated with fluorescein isothicyanate
  2,497 148 7
New apigenin glycoside, polyphenolic constituents,anti-inflammatory and hepatoprotective activities of Gaillardia grandiflora and Gaillardia pulchella aerial parts
Fatma A Moharram, Rabab Abd El Moneim El Dib, Mohamed S Marzouk, Siham M El-Shenawy, Haitham A Ibrahim
April-June 2017, 13(50):244-249
DOI:10.4103/pm.pm_344_16  PMID:28808387
Background: Gaillardia grandiflora Hort. ex Van Houte and Gaillardia pulchella Foug are flowering plants widely cultivated in Egypt for their ornamental value. Previous reports demonstrated that sesquiterpene derivatives represent the major compounds in both species. Moreover, only few flavones were identified from genus Gaillardia and few studies on the cytotoxicity of G. pulchella were found. Aim of the Study: Investigation of the phenolic constituents of the aerial parts of both species and evaluation of their anti-inflammatory and hepatoprotective activities. Materials and Methods: The 80% aqueous methanol extracts (AME) were prepared for both plants and evaluated for their biological activities. Phytochemical investigation of both extracts resulted in isolation of twelve compounds, which have been identified on the basis of ultraviolet, 1D and 2D nuclear magnetic resonance spectroscopy and negative ESI-MS. Results: The new 8-hydroxyapigenin 6-O-β-D-apiofuranosyl-(1'''→6'')-C-β-D-4C1-glucopyranoside was isolated from G. grandiflora for the first time in nature, along with schaftoside, luteolin 6-C-β-D-4C1-glucopyranoside 8-methyl ether, apigenin 6-C-β-D-4C1-glucopyranoside 8-methyl ether, isoorientin, isovitexin, 6-methoxyluteolin and hispidulin, as well as vicenin-2, vitexin, luteolin and apigenin, which were isolated from G. pulchella together with 6-methoxyluteolin. Furthermore, the AME of both species were found to be nontoxic to mice and exhibited significant anti-inflammatory and hepatoprotective activities in dose dependent manner. Conclusion: Current results shed light on the phenolic constituents of G. grandiflora and G. pulchella aerial parts and the safety of the AME of both species, in addition to their significant anti-inflammatory and hepatoprotective activities. Both plant species may be promising candidates for natural anti-inflammatory and hepatoprotective drugs. Abbreviations used: ALP: Alkaline phosphatase; ALT: Alanine aminotransferase; AME: The 80% aqueous methanol extract of G. grandiflora or G. pulchella aerial parts; AST: Aspartate aminotransferase; br d: Broad doublet; Comp-PC: Comparative paper chromatography; d: Doublet; 2D-PC: Two-dimensional paper chromatography; DMSO-d6: Deuterated dimethyl sulfoxide; G.: Gaillardia; GPx: Glutathione peroxidase; GRd: Glutathione reductase; GSH: glutathione; GST: Glutathione-S-transferase; J: Nuclear spin-spin coupling constant; m: Multiplet; [M-H].: Molecular ion peak; MDA: Malondialdehyde; m/z: Mass/charge ratio; NO: Nitric oxide; p: Probability; PC: Paper chromatography; Rf: Retention flow; rpm: Rotation per minute; s: Singlet; SDE: The ethanol extract of Scoparia dulcis; SE: Standard error; SOD: Superoxide dismutase; TMS: Tetramethylsilane; γmax: Maximum fluorescence emission wavelength.
  2,635 0 2
Antiurolithiatic effect of Sirupeelai Samoola Kudineer: A polyherbal siddha decoction on ethylene glycol-induced renal calculus in experimental rats
A Hannah Rachel Vasanthi, V Muthulakshmi, V Gayathri, R Manikandan, S Ananthi, Sarah Kuruvilla
April-June 2017, 13(50):273-279
DOI:10.4103/pm.pm_454_16  PMID:28808392
Background: Sirupeelai Samoola Kudineer (SK), a polyherbal decoction containing four medicinal plants has been used in Siddha system of medicine, practiced in Southern parts of India for the management of urolithiasis. Objective: The present study is carried out to scientifically validate the traditional claim and to study the mechanism of action of the drug. Materials and Methods: In the present study, anti-urolithiatic effect of SK was evaluated in Sprague-Dawley rats using ethylene glycol through drinking water and intraperitoneal injection of sodium oxalate. Renal damage was confirmed by the increased production of thiobarbituric acid reactive substance (TBARS). Results: Co-treatment with SK to urolithiatic rats for 21 days significantly prevented the elevation of renal and urinary stone biomarkers in plasma and renal tissue thereby preventing renal damage and the formation of renal calculi. Administration of SK at all doses and cystone restored the antioxidant (glutathione) levels by preventing the elevation of TBARS in the kidney tissue, which was further confirmed by histological sections. Conclusions: SK treatment promotes diuresis which leads to flushing of the renal stones and maintains the alkaline environment in the urinary system which probably mediates the antilithiatic activity. SK provides structural and functional protection to the kidneys by enhancing its physiological function against stone formation and validates its clinical use. Abbreviations used: SK: Sirupeelai Samoola Kudineer; TBARS: ThioBarbituric Acid Reactive Substances; SOD: SuperOxide Dismutase; GPx: Gluthathione peroxidase; GSH- Glutathione; LPO: Lipid peroxidation as measured as TBARS; AST: Aspartate AminoTransferase; ALT: Alanine Amino transferase; GGT: Gamma Glutamyl Transferase; LDH: Lactate Dehydrogenase.
  2,440 139 2
Catha edulis Forsk. (Khat): Evaluation of its antidepressant-like Activity
Hassan Alfaifi, Siddig Ibrahim Abdelwahab, Syam Mohan, Manal Mohamed Elhassan Taha, Sohier M Syame, Lamiaa A Shaala, Rashad Alsanosy
April-June 2017, 13(50):354-358
DOI:10.4103/pm.pm_442_16  PMID:28808405
Background: Catha edulis Forsk. (Khat) is traditionally used for treating various disorders. Nevertheless there are no reports of any scientific assessment of its psychopharmacological properties. Objective: Therefore, the current study was designed to evaluate the antidepressant-like activity of Khat ethanolic extract using established animal models of depression and stress. Materials and Methods: Ninety healthy male albino mice were used in this study. Forced swim, tail suspension and head poking tests were utilized to evaluate the antidepressant-like activity of the ethanolic extract of Khat (100, 200 and 400 mg/kg, i.p.) and escitalopram (standard drug) which were administered 30 min prior to the tests. Phytochemical analysis of the standardized extract was conducted using liquid chromatography-mass spectroscopy (LC-MS). Results: A significant decrease in the head-dipping behavior was noticed after administration of 100, 200 and 400 mg/kg of Khat extract. Moreover, the extract significantly decreased the immobility time in tail suspension and forced swim tests. The presence of cathinone and cathine were detected in the extract using LC-MS. Conclusion: The current results suggest that the extract of Khat leaves has acute antidepressant properties and may have sedative effects. Abbreviations used: LC-MS: Liquid chromatography-mass spectroscopy; NIST: National institute of standard technology; SSRI: Serotonin reuptake inhibitors; FST: Forced swim test; TST: Tail suspension test.
  2,455 114 4
Screening of fruits of seven plants indicated for medicinal use in Iraq
Omar Aldulaimi
April-June 2017, 13(50):189-195
DOI:10.4103/pm.pm_503_16  PMID:28808379
Introduction: Coumarins exert many biological effects in humans, animals, and plants, which make the evaluation of their biological activities and study of their role in ethnomedicine highly valued. Objectives: Here, we selected seven plants which have ethnopharmacological use as antimicrobial in Iraq and the aims were to quantify the two structural isomers bergapten and methoxsalen in their seeds, to evaluate the antibacterial activities against several clinical isolates, and to isolate bergapten and methoxsalen from Ammi majus. Materials and Methods: Seven plants were extracted by petroleum ether (PE) and ethanol (EtOH). Bergapten and methoxsalen were separated and purified by preparative thin-layer chromatography. Quantification of the furanocoumarins has been conducted by high-performance liquid chromatography, and all the plant extracts and pure compounds were checked for antibacterial activities utilizing alamar blue microplate assay. Results: Cuminum cyminum was deprived of bergapten and methoxsalen and methoxsalen was not detected from Apium graveolens. Bergapten was abundant in PE more than in EtOH; on the other hand, EtOH was rich in methoxsalen. The separation of the two structural isomers was performed using normal phase chromatography and ultraviolet light as an indicator. All extracts showed weak to moderate antibacterial activities against Gram-positive isolates which were more sensitive than the negative ones. C. cyminum extract was least active, uncover the antibacterial role of bergapten and methoxsalen. Conclusion: These findings support the medicinal use of seeds of seven plants from Apiaceae family and quantify the two pharmacologically important furanocoumarins (bergapten and methoxsalen). Abbreviations used: EtOH: Ethanol; MIC: Minimum inhibitory concentration; PE: Petroleum ether; Rf: Retardation factor; Rt: Retention time.
  2,402 133 2
Evaluation of the antidiabetic properties of S-1708 mulberry variety
Brijesh Ranjan, Randhir Kumar, Neeraj Verma, Swati Mittal, Pranab Lal Pakrasi, R Venkatesh Kumar
April-June 2017, 13(50):280-288
DOI:10.4103/pm.pm_490_16  PMID:28808393
Background: Diabetes is a metabolic disease prevalent worldwide in all age group of people. The source of diabetes is due to an oxidation process that can produce free radicals. An increase in oxidative free radicals in the body is reported to be one of the several causes of diabetes. The best remedy to combat oxidative stress is the use of antioxidants, which inhibit and scavenge free radicals. Aim: This study has been undertaken to evaluate the antioxidant activity and antidiabetic effect of mulberry leaf extract in diabetic mice. Materials and Methods: Antioxidant activity of mulberry leaves was determined by 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assay. Antidiabetic assay of mulberry leaf extract was analyzed by oral administration of leaf extract up to 3 weeks in diabetic mice induced by streptozotocin. Results: In vitro antioxidant activity in both DPPH and FRAP assays showed significantly (P < 0.05) higher inhibition of free radicals than that with ascorbic acid. Diabetic mice fed with mulberry leaf extract showed increment (+25.88%) in body weight and a significant reduction in blood glucose concentration (−71.58%). Further, glucose-6-phosphate dehydrogenase enzyme activity was significantly (P < 0.05) increased, whereas activities of other enzymes particularly catalase, serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase were decreased in diabetic mice after oral administration of mulberry leaf extracts. Histology of liver revealed regeneration of hepatocytes, central vein, and nucleus. Conclusion: This study demonstrated that S-1708 mulberry variety has a potential therapeutic value in diabetes and related complications. Abbreviations used: S-1708, DPPH, FRAP.
  2,411 121 4
Betulinic acid from Zizyphus Joazeiro bark using focused microwave-assisted extraction and response surface methodology
Fernanda Carolina Sousa Fonseca, Letícia Caribé Batista Reis, Jener David Gonçalves dos Santos, Carla Rodrigues Cardoso Branco, Sergio Luis da Costa Ferreira, Jorge Mauricio David, Alexsandro Branco
April-June 2017, 13(50):226-229
DOI:10.4103/0973-1296.204565  PMID:28539712
Background: The effect of the extraction time (min) and temperature (°C) on the yield of betulinic acid (BA) from Zizyphus joazeiro barks using focused microwave-assisted extraction was investigated. Materials and Methods: The ethyl acetate was used as extractor solvent because it was shown to provide a betulinic acid-clean extract. A full two-level statistical factorial design was applied to determine the important effects and interactions of these independent variables upon the yield of BA. Results: The conditions that produced the highest yield of BA were at temperature of 70°C and an extraction time of 15 min (3.33 mg per gram of plant). Conclusion: The BA has drawn attention due to its use as a raw material in the synthesis of active compounds against the Human Immunodeficiency Virus (HIV). Abbreviation used: BA: Betulinic acid; FMAE: Focused microwave assisted extraction; HPLC: High-performance liquid chromatography; RSD: Relative standard deviations.
  2,428 97 1
Chemopreventive and antioxidant effect of polyphenol free Spirulina maxima and its hydrolyzed protein content: Investigation on azoxymethane treated mice
Nikte Y Martinez-Palma, Gloria Dávila-Ortiz, Cristian Jiménez-Martínez, Eduardo Madrigal-Bujaidar, Isela Álvarez-González
April-June 2017, 13(50):164-169
DOI:10.4103/0973-1296.210197  PMID:28808375
Background: Spirulina maxima (Sm) is known to have nutritive value as well as a number of potentially useful biomedical properties. Objectives: The initial purpose of this report was to evaluate the inhibitory effect of the alga (without its polyphenol content), on the induction of azoxymethane (AOM)-induced colon aberrant crypts (AC) in mouse. Besides, we hydrolyzed the protein content of such mixture. Our second aim was to determine the inhibitory potential of this last plant mixture on the AOM-induced colon AC in mouse. Moreover, we also determined the effect of the two indicated Sm samples on the oxidative damage caused by AOM in the colon and liver of treated mice. Materials and Methods: The experiment lasted 5 weeks. At the end, we registered the level of AC, nitric oxide, and the lipid and protein oxidation. Results: Our results showed the following: (1) the carcinogen increased more than 18 times the amount of the AC found in the control group. (2) On the contrary, the two tested mixtures of Sm produced a significant reduction over this damage (about 45%). (3) The two tested Sm mixtures were generally able to reduce the oxidative stress markers although with variable effects which go from 59% to 100% with respect to the control mice. Conclusion: Therefore, the present report established that the tested Sm fractions have mouse colon anticarcinogenic potential, partially related with their antioxidant capacity. Our report also suggested the need to further evaluate specific Sm chemicals as chemopreventive agents.
  2,382 139 1
Peimine inhibits the production of proinflammatory cytokines through regulation of the phosphorylation of NF-κB and MAPKs in HMC-1 Cells
Ji Hye Park, Bina Lee, Hyun Kab Kim, Eun-Young Kim, Jae-Hyun Kim, Ju-Hee Min, Sunkook Kim, Youngjoo Sohn, Hyuk-Sang Jung
April-June 2017, 13(50):359-364
DOI:10.4103/0973-1296.210173  PMID:28808406
Background: Peimine is a major biologically active component of Fritillaria ussuriensis. Peimine was investigated in chronic inflammation response, but it has not been studied in mast cell-related immediate allergic reaction. The present study aimed to evaluate anti-allergic effect of peimine in human mast cell (HMC-1). Materials and Methods: The effect of peimine on cell viability was measured by MTS assay in HMC-1. Histamine release was investigated in rat peritoneal mast cells (RPMCs). Interleukin (IL)-6, IL-8, and tumor necrosis factor-α (TNF-α) expressions were measured by ELISA assay and reverse transcription-polymerase chain reaction. Mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-κB) were examined by Western blot. Passive cutaneous anaphylaxis (PCA) reactions were evaluated using Sprague-Dawley (SD) rats. Results: Peimine inhibited the production of pro-inflammatory cytokines, such as IL-6, IL-8, and TNF-α. Moreover, peimine reduced MAPKs phosphorylation and the nuclear NF-κB expression in PMACI-induced HMC-1. Peimine decreased PCA reactions in rats as well. Conclusion: Our study proved that peimine might be suitable for the treatment of mast cell-derived allergic inflammatory reactions. Abbreviations used: HMC-1: Human mast cell, MTS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, RPMCs: Rat peritoneal mast cells. IL-6: Interleukin 6, IL-8: Interleukin 8, TNF-α: Tumor necrosis factor-α, MAPKs: Mitogen-activated protein kinases; NF-κB: Nuclear factor-kappaB, PCA: Passive cutaneous anaphylaxis reactions, SD: Sprague-Dawley.
  2,362 150 5
Anti-inflammatory effect of Etlingera pavieana (Pierre ex Gagnep.) R.M.Sm. rhizomal extract and its phenolic compounds in lipopolysaccharide-stimulated macrophages
Ekaruth Srisook, Mullika Palachot, Sakulrat Mankhong, Klaokwan Srisook
April-June 2017, 13(50):230-235
DOI:10.4103/pm.pm_558_16  PMID:28808385
Background: In our continuing search for anti-inflammatory agents from Thai herbs, Etlingera pavieana (Pierre ex Gagnep.) R.M.Sm. showed potent inhibition on nitric oxide (NO) production in lipopolysaccharide (LPS)-induced macrophages. However, the mechanism behind its inhibitory effect has not been yet explored, and little is known regarding its bioactive compounds responsible for the anti-inflammatory effect. Objective: In the present study, anti-inflammatory effect of hexane, ethyl acetate, and water fractions of rhizomal ethanol extracts of E. pavieana was evaluated for their inhibition on NO production and mechanism in LPS-stimulated macrophages. Active compounds responsible for such anti-inflammatory activity were identified. Materials and Methods: Inhibitory activities on NO production were performed in LPS-stimulated RAW264.7 macrophage. Cytotoxicity of plant extracts was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, mRNA and protein expressions by reverse transcription-polymerase chain reaction and Western blotting analysis, respectively. Anti-inflammatory compounds were isolated by activity-guided isolation technique using column chromatography. Results: Ethyl acetate fraction of E. pavieana (EPE) showed the most potent inhibitory effect on NO production in macrophages. EPE significantly decreased NO production and inhibited inducible nitric oxide synthase (iNOS) protein and mRNA expression in a dose-dependent manner. Furthermore, the level of nuclear factor-kappa B p65 subunit was markedly reduced in activated cells treated with EPE. Four phenolic compounds, 4-methoxycinnamyl alcohol (1), trans-4-methoxycinnamaldehyde (2), 4-methoxycinnamyl p-coumarate (3), and p-coumaric acid (4), were obtained from bioactivity-guided isolation technique. Conclusions: The anti-inflammatory property contained in E. pavieana rhizome extract and conferred through inhibition of iNOS expression, and NO formation provides scientific evidence and support for the development of new anti-inflammatory agents based on extracts from this plant. Abbreviations used: EPE: Ethyl acetate fraction of Etlingera pavieana; EPH: Hexane fraction of Etlingera pavieana; EPW: Water fraction of Etlingera pavieana; NO: Nitric oxide (NO); LPS: Lipopolysaccharide; iNOS: Inducible nitric oxide synthase (iNOS); MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NF-κB: Nuclear factor-kappa B; DMSO: Dimethyl sulfoxide; EtOAc: Ethylacetate; MeOH: Methanol; AG: Aminoguanidine; DCM: Dichloromethane; MCA: 4-methoxycinnamyl alcohol; MCD: trans-4-methoxycinnamaldehyde; MCC: 4-methoxycinnamyl p-coumarate; CM: p-coumaric acid.
  2,376 130 2
Content determination of phenylpropanoids and enhancing exercise ability of effective fractions in pedicularis densispica
Hongbiao Chu, Zhihua Zhang, Dong Chen, Xi Wang, Qilong Tu
April-June 2017, 13(50):230-235
DOI:10.4103/0973-1296.204567  PMID:28539713
Background: Most researches were focused on chemical constituents and bioactivities of Pedicularis. However, there were a few reports on simultaneous determination of the series phenylpropanoids compounds in Pedicularis by High Performance Liquid Chromatography (HPLC). Objective: To establish an HPLC method for simultaneous determination of salidroside, verbascoside, iso-verbascoside, leucoseptoside A, jionoside D and martynoside in Pedicularis densispica (PD), and to assess the enhancing exercise ability of effective fractions of phenylpropanoids (EFP). Materials and Methods: The separation was performed on C18 column with step-wise gradient elution with water (A)-methanol (B) as the mobile phase at a flow rate of 1.0 mL/min, with detection wavelength at 275 nm (0–4 min) and 330 nm (4–40 min). The EFP were obtained from extracts of PD by resin gradient dilution. The enhancing exercise ability of EFP was exerted in exhaustive swimming and anoxia endurance tests in vivo. Results: The contents of six marker compounds had good linear relationship in the ranges of 2.10–8.40, 13.60–54.40, 0.93–3.72, 0.53–2.12, 1.50–6.00, 0.37–1.28, respectively, and the average recoveries of the six phenylpropanoids were all in the range of 98–103%. Total contents of phenylpropanoids in EFP were more than 60%. Three medicine groups of exhaustive swimming and anoxia endurance time were higher than those of the water group. Conclusion: The analytical method is reliable, simple and accurate, and can be used for the comprehensive quality control of PD. This experiment suggests that PD has the effect of promoting the recovery and elimination of fatigue and improving the exercise capacity. Abbreviation used: PD: Pedicularis densispica, EFP: Effective fractions of phenylpropanoids, DAD: Diode array detector, HPLC: High performance liquid chromatography, LOD: Limits of detection, LOQ: Limits of quantification, RSD: Relative standard deviation, BV: Bed volumes
  2,379 89 -
Molecular authentication of the traditional medicinal plant “Lakshman Booti” (Smithia conferta Sm.) and its adulterants through DNA barcoding
Suraj D Umdale, Parthraj R Kshirsagar, Manoj M Lekhak, Nikhil B Gaikwad
April-June 2017, 13(50):224-229
DOI:10.4103/pm.pm_499_16  PMID:28808384
Background: Smithia conferta Sm. is an annual herb widely used in Indian traditional medical practice and commonly known as “Lakshman booti” in Sanskrit. Morphological resemblance among the species of genus Smithia Aiton. leads to inaccurate identification and adulteration. This causes inconsistent therapeutic effects and also affects the quality of herbal medicine. Aim: This study aimed to generate potential barcode for authentication of S. conferta and its adulterants through DNA barcoding technique. Materials and Methods: Genomic DNA extracted from S. conferta and its adulterants was used as templates for polymerase chain reaction amplification of the barcoding regions. The amplicons were directed for sequencing, and species identification was conducted using BLASTn and unweighted pair-group method with arithmetic mean trees. In addition, the secondary structures of internal transcribed spacer (ITS) 2 region were predicted. Results: The nucleotide sequence of ITS provides species-specific single nucleotide polymorphisms and sequence divergence (22%) than psbA-trnH (10.9%) and rbcL (3.1%) sequences. The ITS barcode indicates that S. conferta and Smithia sensitiva are closely related compared to other species. Conclusion: ITS is the most applicable barcode for molecular authentication of S. conferta, and further chloroplast barcodes should be tested for phylogenetic analysis of genus Smithia. Abbreviations used: BLASTn: Basic Local Alignment Search Tool for Nucleotide; MEGA: Molecular Evolutionary Genetic Analysis; EMBL: European Molecular Biology Laboratory; psbA-trnH: Photosystem II protein D1- stuctural RNA: His tRNA gene; rbcL: Ribulose 1,5 bi-phosphate carboxylase/ oxygenase large subunit gene.
  2,346 119 4
Development and validation of a simultaneous RP-HPLC-UV/DAD method for determination of polyphenols in gels containing S. terebinthifolius raddi (Anacardiaceae)
Melina G. Carvalho, Cícero F. S Aragão, Fernanda N Raffin, Túlio F. A. de L. Moura
April-June 2017, 13(50):309-315
DOI:10.4103/0973-1296.204559  PMID:28539726
Topical gels containing extracts of Schinus terebinthifolius have been used to treat bacterial vaginosis. It has been reported that this species has anti-microbial, anti-inflammatory and anti-ulcerogenic properties, which can be attributed to the presence of phenolic compounds. In this work, a sensitive and selective reversed-phase HPLC-UV/DAD method for the simultaneous assay of six polyphenols that could be present in S. terebinthifolius was developed. The method was shown to be accurate and precise. Peak purity and similarity index both exceeded 0.99. Calibration curves were linear over the concentration range studied, with correlation coefficients between 0.9931 and 0.9974. This method was used to determine the polyphenol content of a hydroalcoholic extract and pharmacy-compounded vaginal gel. Although the method is useful to assess the 6 phenolic compounds, some compounds could not be detected in the products. Abbreviations used: RP-HPLC-UV/DAD: Reverse Phase High Performance Liquid Chromatograph with Ultraviolet and Diode Array Detector, HPLC: High Performance Liquid Chromatograph, HPLC-UV: High Performance Liquid Chromatograph with Ultraviolet Detector, ANVISA: Brazilian National Health Surveillance Agency, LOD: Limit of detection, LOQ: Limit of quantitation
  2,347 84 -
Role of Adiantum philippense L. on glucose uptake in isolated pancreatic cells and inhibition of adipocyte differentiation in 3T3-L1 cell line
Tania Paul, Kishori G Apte, Pradeep B Parab, Biswadeep Das
April-June 2017, 13(50):334-338
DOI:10.4103/pm.pm_415_16  PMID:28808402
Background: Adiantum philippense (AP) is a pteridophyte that shows antihyperglycemic activity in vivo diabetic model, but the mechanism of action is unknown. Objective: AP was found to play a pivotal role in minimizing the high blood glucose in alloxan-induced diabetic rats. Simultaneously, it was observed that it could maintain the normal lipid profile even in diabetic condition. To investigate its insulin-like activity along with its inhibitory role on adipocyte differentiation became the objective of our present study. Materials and Methods: Glucose uptake potential of this fern was done in isolated pancreatic islets and inhibition of adipocyte differentiation was assessed in 3T3-L1 cell line. Before this, the cytotoxic concentration was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on L929 cell line. To determine its role in lipid metabolism, the oil droplets produced in adipocytes were stained with Oil 'O' red staining, and triglyceride levels of various drug treatments were measured spectrophotometrically. Results: This fern extract was found to be actively utilizing glucose in the glucose uptake assay. Moreover, it was also involved in inhibiting differentiation of pro-adipocyte to adipocyte in the 3T3-L1 cell lines. The percentage inhibition as obtained from the absorbance showed that the ethanolic extract at the concentration of 200 μg/ml showed 32.48% inhibition. Conclusion: All the above-mentioned parameters when appraised indicated that this fern could be used as an alternative medicine in managing diabetes associated with obesity. Abbreviations used: AP: Adiantum phillipense; MTT: (3-(4,5- Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide); BSA: Bovine serum albumin; FCS: Fetal calf serum; DMEM: Dulbecco's minimum essential media; RPMI: Roswell park memorial institute medium; DTZ: Dithizone; TG: Triglyceride; PPARγ: Peroxisome proliferator-activated receptor gamma; IBMX: 3-isobutyl-1-methylxanthine; nm: Nanometer; GI: Growth Inhibition; ELISA: Enzyme linked immunosorbent assay.
  2,294 131 -
Caesalpinia Crista Linn. Induces protection against DNA and membrane damage
R Sunil Kumar, Ramesh Balenahalli Narasingappa, Chandrashekhar G Joshi, Talakatta K Girish, Ananda Danagoudar
April-June 2017, 13(50):250-257
DOI:10.4103/pm.pm_557_16  PMID:28808388
Background: Caesalpinia crista is a medicinal herb used to cure various ailments in subtropical and tropical regions of Southeast Asia. Objective: The objective of this evaluation of C. crista against free radical induced DNA and erythrocyte damage. Materials and Methods: The profiles of polyphenol and flavonoid were quantified through reversed-phase high-performance liquid chromatography. Free radical induced DNA and membrane damage were performed using H2O2as oxidative agent. Results: The total polyphenol content of C. crista leaf ethyl acetate extract (CcEA) was 94.5 ± 3.8 mg/gGAE, CcME (C. crista leaf methanol extract) was 52.7 ± 2.8 mg/gGAE, and CcWE (C. crista leaf Water extract) was 31.84 ± 1.8 mg/gGAE. Total flavonoid content of CcEA was 60.46 ± 2.3 mg/gQE, CcME was 46.26 ± 1.8 mg/gQE, and CcWE was 20.47 ± 1.1 mg/gQE. The extracts also exhibited good antioxidant activity as confirmed by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid), hydroxyl scavenging, reducing power, and total antioxidant assays. Among the three extracts, CcEA and CcME showed better protection against red blood cell (RBC) hemolysis and DNA damage as confirmed by electrophoretic study. Further, Scanning electron micrograph data showed that CcEA revealed the free radical induced structural alterations in RBC. Conclusion: These findings suggest that C. crista contains bioactive molecules and can inhibit oxidative stress and can be source of further study to use this in herbal medicine. Abbreviations used: ABTS: 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid); CcEA: C. crista leaf ethyl acetate extract; CcME: C. crista leaf methanol extract; CcWE: C. crista leaf Water extract; DPPH: 2,2-diphenyl-1-picrylhydrazyl; GAE: Gallic acid Equivalent; H2O2: Hydrogen Peroxide; QE: Quercetin Equivalent; RNS: Reactive Nitrogen Spevcies; ROS: Reactive Oxygen Species; SEM: Scanning Electron Microscope.
  2,298 107 1
Chemopreventive potential of major flavonoid compound of methanolic bark extract of Saraca asoca (Roxb.) in benzene -induced toxicity of acute myeloid leukemia mice
Manas Kumar Mukhopadhyay, Mithun Shaw, Debjani Nath
April-June 2017, 13(50):216-223
DOI:10.4103/pm.pm_326_15  PMID:28808383
Background: Saraca asoca (SA) (Roxb.) is one of the folk medicinal plants found in India, Bangladesh, and Sri Lanka. Its major biological activity appears due to the presence of flavonoid group of compounds in its bark extract. Objective: In this study, our research aims to analyze the chemopreventive effect of flavonoids, especially a natural phenol catechin present in the bark methanolic extract of SA on acute myeloid leukemia (AML) mice. Materials and Methods: The total bark extract was partitioned and analyzed on thin-layer chromatography (TLC) plate. The yellow-brown material of spot 4 was analyzed and identified as catechin. The yellowish brown material (YBM) was tested for their chemopreventive potential. An in vivo AML mice model was used to test the efficacy. Hematological parameters (Hb %, red blood cell, and white blood cell count), expression of cell cycle regulatory proteins, and DNA fragmentation analysis were performed. Results: After treatment of benzene-exposed mice with the major flavonoid compound, namely catechin, the above parameters increase significantly (P < 0.05). There was an upregulation of p53 and p21, caspase 11 myeloperoxidase, bcl2, and CYP2EI in catechin-treated group. DNA was less fragmented in flavonoid-treated group compared to that of control (P ≤ 0.05). The present study indicates that the secondary metabolites of SA methanolic bark extract, comprising flavonoid catechin as major constituents, have modulatory effect in cell cycle deregulation and hematological abnormalities induced by benzene in mice. Conclusions: Our data suggest that catechin from methanolic bark extract of SA effectively attenuates benzene-induced secondary AML in bone marrow, which is likely associated with the anticell cycle deregulation properties of this flavan-3-ol. This study was supported by the observation that catechin (YBM), like doxorubicin, can act as the neutralizer and protector of mortality in cancer cases.
  2,272 128 1
Hepatoprotective effect of gallotannin-enriched extract isolated from gall on hydrogen peroxide-induced cytotoxicity in HepG2 cells
Jun Go, Ji Eun Kim, Eun Kyoung Koh, Sung Hwa Song, Hyun Gu Kang, Young Hee Lee, Han Do Kim, Jin Tae Hong, Dae Youn Hwang
April-June 2017, 13(50):294-300
DOI:10.4103/pm.pm_424_15  PMID:28808395
Background: Gall (Galla Rhois [GR]) is known to have antibacterial, anti-inflammatory, antimetastatic, and anti-invasion activities and exert hepatoprotective effects. However, the hepatoprotective effects of gallotannin-enriched GR (GEGR) and their mechanisms have not yet been investigated. Objective: The potential protective effect of GEGR against hepatotoxicity induced by hydrogen peroxide (H2O2) was investigated. Materials and Methods: Changes in cell viability, apoptosis protein expression, and reactive oxygen species (ROS) generation were determined in HepG2 cells that were pretreated with four different concentrations of GEGR (6.25–50 μg/ml) for 24 h before H2O2exposure. Results: GEGR consisted of gallotannin (69.2%), gallic acid (26.6%), and methyl gallate (4.2%) and showed remarkable 2,2-diphenyl-1-picrylhydrazyl scavenging activity (inhibitory concentration 50% = 0.212 μg/ml). The lethal dose 50% and effective dose 50% values for the response of HepG2 cells to GEGR were determined to be 178 and 6.85 μg/ml, respectively. Significant reductions in the immunofluorescence intensity indicating apoptosis were also detected in the nuclei of HepG2 cells stained with 4',6-diamidino-2-phenylindole and Annexin V after GEGR treatment. The Bax/Bcl-2 ratio and active caspase-3 level were higher in H2O2 + vehicle-treated cells. However, these levels gradually decreased to those of the No-treated group in the GEGR pretreated group even though little or no decrease was observed in response to low GEGR concentrations. Furthermore, the GEGR pretreated group showed a reduced level of 2-,7--dichlorofluorescein diacetate stained cells, indicating ROS generation relative to the H2O2 + vehicle-treated group. Conclusion: The results of this study provide strong evidence that GEGR can prevent cell death induced by H2O2in HepG2 cells through the induction of antioxidant conditions. Abbreviations used: COX: Cyclooxygenase; DAPI: 4',6-diamidino-2-phenylindole; DMSO: Dimethyl sulfoxide; DPPH: 2,2-diphenyl-1-picrylhydrazyl; GEGR: Gallotannin-enriched Galla Rhois; GR: Galla Rhois; HPLC: High-performance liquid chromatography; H2O2: Hydrogen peroxide; MMP: Metallopeptidase; MTT: 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; ROS: Reactive oxygen species; UV-Vis: Ultraviolet-visible.
  2,232 114 2
In vitro antioxidant and antiproliferative activities of various solvent fractions from Clerodendrum viscosum leaves
Anil Khushalrao Shendge, Tapasree Basu, Dipankar Chaudhuri, Sourav Panja, Nripendranath Mandal
April-June 2017, 13(50):344-353
DOI:10.4103/pm.pm_395_16  PMID:28808404
Background: Free radicals such as reactive oxygen and nitrogen species, generated in the body, play an important role in the fulfillment of various physiological functions but their imbalance in the body lead to cellular injury and various clinical disorders such as cancer, neurodegenaration, and inflammation. Objective: The objective of this study is to fight this problem, natural antioxidant from plants can be considered as possible protective agents against various diseases such as cancer which might also modify the redox microenvironment to reduce the genetic instability. This study was designed to evaluate the antioxidant and antiproliferative potential of Clerodendrum viscosum fractions against various carcinomas. Materials and Methods: In this present study, 70% methanolic extract of C. viscosum leaves have been fractionated to obtain hexane, chloroform, ethyl acetate, butanol, and water fractions, which were tested for their antioxidant and anticancer properties. Results: It was observed that chloroform and ethyl acetate fractions showed good free radical scavenging properties as well as inhibited the proliferation of human lung cancer (A459), breast (MCF-7), and brain (U87) cells. Moreover, they arrested the cell cycle at G2/M phase of breast and brain cancer. These inhibitory effects were further confirmed by bromodeoxyuridine uptake imaging. Phytochemical investigations further indicate the presence of tannic acid, quercetin, ellagic caid, gallic acid, reserpine, and methyl gallate which might be the reason for these fractions' antioxidant and antiproliferative activities. Conclusion: Clerodendrum viscosum leaf chloroform and Clerodendrum viscosum leaf ethyl acetate fractions from C. viscosum showed good reactive oxygen species and reactive nitrogen species scavenging potential. Both the fractions arrested cell cycle at G2/M phase in MCF-7 and U87 cells which lead to induce apoptosis. Abbreviations used: CVLME: Clerodendrum viscosum leaf methanolic extract; CVLH: Clerodendrum viscosum leaf hexane; CVLC: Clerodendrum viscosum leaf chloroform; CVLE: Clerodendrum viscosum leaf ethyl acetate; CVLB: Clerodendrum viscosum leaf butanol; CVLW: Clerodendrum viscosum leaf water; BrdU: Bromodeoxyuridine; WST-1: Water soluble tetrazolium salt.
  2,226 120 7
Anti-differentiation effect of B, D-seco limonoids of Swietenia mahogani
Heejung Yang, Mina Choi, Dong Young Lee, Sang Hyun Sung
April-June 2017, 13(50):293-299
DOI:10.4103/0973-1296.204549  PMID:28539724
Background: Obesity is a pathological state caused by abnormal or excessive accumulation of fat. Swietenia mahogani JACQ., known as West Indian mahogany, is a medium-sized semi-evergreen tree belonging to Meliaceae. Their seeds are used in Indonesian folk medicine as a treatment for hypertension, diabetes, malaria, and it also has anti-feedant activities. The major components of S. mahogani are B, D-seco limonoids, a type of irregular triterpenes are well known. Objective: We tried to find the bioactive components, which have the inhibitory activity on adipocyte differentiation from the seeds of S. mahogani. Material and Methods: 3T3-L1 cells, derived from mouse preadipocyte, are widely used in studying adipogenesis process. In this study, we used 3T3-L1 cells to find natural products with the inhibitory activity on adipocyte differentiation. S. mahogani seeds were dried and extracted with 100% MeOH. Results: The methanolic extract was fractionated by bioassay-guided method to give nine B, D-seco limonoids (1-9) with slight structural modifications. Among nine compounds, compounds 4, 6 and 8 exhibited significant inhibitory effects of cell differentiation on 3T3-L1 cells. Those compounds have tigloyl residue at C-3 in common. Besides, compounds with no tigloyl residue at C-3 showed insignificant effect. Nevertheless, not all compounds with tigloyl residue at C-3 exerted significant inhibitory effect. Conclusion: These results suggested that tigloyl residue at C-3 may play a role in the anti-proliferative activity on a dipogenesis and the refined extract of S. mahogani may have a potential to be developed as a therapeutic agent to treat obesity.
  2,227 86 -
Antiproliferative activity of Haematoxylum brasiletto H. Karst
J Bello-Martinez, M Jiménez-Estrada, JL Rosas-Acevedo, LP Avila-Caballero, M Vidal-Gutierrez, C Patiño-Morales, E Ortiz-Sánchez, RE Robles-Zepeda
April-June 2017, 13(50):289-293
DOI:10.4103/pm.pm_466_16  PMID:28808394
Background: Haematoxylum brasiletto is a tree that grows in Central America, commonly known as “Palo de Brasil,” which is used in the traditional medicine for the treatment of cancer and gastric ulcers. Objective: The aim of this study was to isolate the compounds responsible for antiproliferative activity of H. brasiletto. Materials and Methods: A bioassay-guided fractionation of ethanol extract of H. brasiletto was performed using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide cell proliferation assay to measure the antiproliferative activity on six human cancer cell lines (A549, LS180, HeLa, SiHa, MDA-MB-231, and NCI-H1299) and one human noncancer cell line (ARPE-19). The ethanol extract was partitioned with hexane, dichloromethane, and ethyl acetate. The active dichloromethane fraction was fractioned by silica-column chromatography, and active subfractions were separated using preparative-thin layer chromatography. The chemical structure of an isolated compound was elucidated with different chemical and spectroscopic methods. Results: The flavonoid brazilin (1) was isolated from the heartwood of H. brasiletto. The measurement of antiproliferative activity showed that brazilin can inhibit the growth of SiHa, MDA-MB-231, A549, and NCI-H1299 cell lines by 50% at doses of 44.3, 48.7, 45.4, and 48.7 μM, respectively. Furthermore, the flavonoid showed a high antiproliferative activity on LS 180 and HeLa with IC50 values of 62.2 and 71.9 μM, respectively. Brazilin also exhibited a high antiproliferative activity on the human noncancer cell line ARPE-19 with an IC50 value of 37.9 μM. Conclusions: Brazilin: (6aS,11bR)-7,11b-Dihidro-6H-indeno[2,1-c] cromeno-3,6a, 9,10-tetrol was isolated; this compound demonstrated antiproliferative activity against several human cancer cell lines. This work demonstrated that brazilin, a flavonoid isolated and characterized of H. brasiletto, has antiproliferative activity against cancer cell lines. Abbreviations used: MTT: [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium]; FBS: Fetal bovine serum; TLC: Thin layer chromatography.
  2,179 127 -
Catechin isolated from Garcinia celebica leaves inhibit Plasmodium falciparum growth through the induction of oxidative stress
Rizky Abdulah, Eka W Suradji, Anas Subarnas, Unang Supratman, Milyadi Sugijanto, Ajeng Diantini, Keri Lestari, Melisa I Barliana, Shinichiro Kawazu, Hiroshi Koyama
April-June 2017, 13(50):301-305
DOI:10.4103/pm.pm_571_16  PMID:28808396
Background: Resistance of antimalarial drugs to Plasmodium falciparum has become a major concern in malaria eradication. Although it is also affected by several socioeconomic factors, a new antiplasmodial agent is needed for a global malaria control program. Objective: In this study, we attempted to uncover the antiplasmodial properties of Garcinia celebica, an Indonesian medicinal plant, along with the responsible compound and its possible mechanism. Materials and Methods: The G. celebica leaves were ethanol extracted and fractionated based on their polarity using n-hexane, ethyl acetate, and water. The antiplasmodial activity was tested in vitro against chloroquine-resistant P. falciparum at 100 μg/ml for 72 h. The active compound of the most active ethyl acetate fraction was subsequently isolated using column chromatography and identified by nuclear magnetic resonance. Results: The IC50of (+)-catechin, the characterized compound, against P. falciparum was 198 μM in 24 h and experiment. The isolated catechin inhibited P. falciparum growth in both trophozoite and schizont stages. An additional experiment also suggests that the antiplasmodial property of catechin occurs through the induction of the oxidative stress to P. falciparum. Conclusion: This result shows that the potential of catechin and its antimalarial properties should be explored further. Abbreviations used: RBC: Red Blood Cells; IC50: Inhibition Concentrattino 50; MeOH: Methanol; RPMI: Roswell Park Memorial Institute; EI: Electron Ionization.
  2,121 137 4
The possible pre -and post -UVA radiation protective effect of amaranth oil on human skin fibroblast cells
Katarzyna Wolosik, Ilona Zareba, Arkadiusz Surazynski, Agnieszka Markowska
April-June 2017, 13(50):339-343
DOI:10.4103/pm.pm_522_15  PMID:28808403
Background: The health effects of Amaranth Oil (AO) are attributed to its specific chemical composition. That makes it an outstanding natural product for the prevention and treatment of ultraviolet (UV) irradiation-related pathologies such as sunburn, photoaging, photoimmunosuppression, and photocarcinogenesis. Most of the studies are taken on animal model, and there is a lack of research on the endogenous effect of AO on fibroblast level, where UVA takes it harmful place. Objective: The aim of this study was evaluation if AO can protect or abolish UVA exposure effect on human skin fibroblast. Materials and Methods: The 0.1% AO, 0.25% AO, and 0.5% AO concentration and irradiation for 15 min under UVA-emitting lamp were studied in various condition. In all experiments, the mean values for six assays ± standard deviations were calculated. Results: Pretreatment with various concentrations of AO was tested. The highest concentration of AO where cell survival was observed was 0.5%. Cytotoxicity assays provided evidence for pre- and post-UVA protective effect of 0.1% AO among three tested concentrations. The results also provide evidence that UVA has inhibitory effect on collagen biosynthesis in confluent skin fibroblast, but presence of 0.1% AO abolishes pre- and post-UVA effect comparing to other used AO concentration. The assessment results on DNA biosynthesis show the significant abolished post-UVA effect when 0.1% and 0.5% of AO were added. Conclusion: AO gives pre- and post-UVA protection in low concentration. This provides the evidence for using it not as a main protective factor against UV but as one of the combined components in cosmetic formulation. Abbreviations used: AO: Amaranth Oil.
  2,083 127 2
Simultaneous determination of four compounds, campesterol, emodin8-O-β-D-Glucopyranoside, quercetin, and isoquercitrin in Reynoutria sachalinensis by high-performance liquid chromatography-diode array detector
Min Rye Eom, Jin Bae Weon, Youn Sik Jung, Ga Hee Ryu, Woo Seung Yang, Choong Je Ma
April-June 2017, 13(50):258-261
DOI:10.4103/pm.pm_289_16  PMID:28808389
Background: Reynoutria sachalinensis is a well-known and used herbal medicine to treatment of arthralgia, jaundice, amenorrhea, coughs, carbuncles, and sores. Objective: We have developed high-performance liquid chromatography analysis method for simultaneous determination of isolated four compounds, campesterol, emodin8-O-β-D-glucopyranoside, quercetin, and isoquercitrin from R. sachalinensis is. Materials and Methods: The four compounds were separated on Shiseido C18column (S-5 μm, 4.6 mm I.D. ×250 mm) at a column temperature of 25°C. The mobile phase composed of water and methanol with gradient elution system, and flow rate is 1.0 ml/min. The detection wavelength was set at 205 nm. Results: Validation of this analytical method was evaluated by linearity, precision, and accuracy test. This established method had good linearity (R2 > 0.997). The relative standard deviation values of intra- and inter-day testing were indicated that <2%, and accuracy is 91.66%–103.31% at intraday and 91.69%–103.31% at intraday. The results of recovery test were 92.60%–108.99%. Conclusion: In these results, developed method was accurate and reliable to the quality evaluation of campesterol, emodin 8-O-β-D-glucopyranoside, quercetin, and isoquercitrin isolated from R. sachalinensis. Abbreviations used: HPLC: High-performance liquid chromatography, DAD: Diode array detector, LOD: Limit of detection, LOQ: Limit of quantitation, ICH: International Conference on Harmonisation.
  2,112 84 1
Identification and analysis of jasmonate pathway genes in Coffea canephora (robusta coffee) by in silico approach
Kosaraju Bharathi, HL Sreenath
April-June 2017, 13(50):196-200
DOI:10.4103/pm.pm_518_16  PMID:28808380
Background: Coffea canephora is the commonly cultivated coffee species in the world along with Coffea arabica. Different pests and pathogens affect the production and quality of the coffee. Jasmonic acid (JA) is a plant hormone which plays an important role in plants growth, development, and defense mechanisms, particularly against insect pests. The key enzymes involved in the production of JA are lipoxygenase, allene oxide synthase, allene oxide cyclase, and 12-oxo-phytodienoic reductase. There is no report on the genes involved in JA pathway in coffee plants. Objective: We made an attempt to identify and analyze the genes coding for these enzymes in C. canephora. Materials and Methods: First, protein sequences of jasmonate pathway genes from model plant Arabidopsis thaliana were identified in the National Center for Biotechnology Information (NCBI) database. These protein sequences were used to search the web-based database Coffee Genome Hub to identify homologous protein sequences in C. canephora genome using Basic Local Alignment Search Tool (BLAST). Results: Homologous protein sequences for key genes were identified in the C. canephora genome database. Protein sequences of the top matches were in turn used to search in NCBI database using BLAST tool to confirm the identity of the selected proteins and to identify closely related genes in species. The protein sequences from C. canephora database and the top matches in NCBI were aligned, and phylogenetic trees were constructed using MEGA6 software and identified the genetic distance of the respective genes. The study identified the four key genes of JA pathway in C. canephora, confirming the conserved nature of the pathway in coffee. The study expected to be useful to further explore the defense mechanisms of coffee plants. Conclusion: JA is a plant hormone that plays an important role in plant defense against insect pests. Genes coding for the 4 key enzymes involved in the production of JA viz., LOX, AOS, AOC, and OPR are identified in C. canephora (robusta coffee) by bioinformatic approaches confirming the conserved nature of the pathway in coffee. The findings are useful to understand the defense mechanisms of C. canephora and coffee breeding in the long run. Abbreviations used: C. canephora: Coffea canephora; C. arabica: Coffea arabica; JA: Jasmonic acid; CGH: Coffee Genome Hub; NCBI: National Centre for Biotechnology Information; BLAST: Basic Local Alignment Search Tool; A. thaliana: Arabidopsis thaliana; LOX: Lipoxygenase, AOS: Allene oxide synthase; AOC: Allene oxide cyclase; OPR: 12 oxo phytodienoic reductase.
  2,086 107 -
Assessment of mexican arnica (Heterotheca inuloides Cass) and rosemary (Rosmarinus officinalis) extracts on dopamine and selected biomarkers of oxidative stress in stomach and brain of Salmonella typhimurium infected rats
David Calderķn Guzmān, Maribel Ortiz Herrera, Norma Osnaya Brizuela, Gerardo Barragàn Mejía, Ernestina Hernàndez García, Hugo Juàrez Olguín, Armando Valenzuela Peraza, Norma Labra Ruíz, Daniel Santamaría Del Angel
April-June 2017, 13(50):203-208
DOI:10.4103/0973-1296.204553  PMID:28539708
Background: The effects of some natural products on dopamine (DA) and 5-hydroxyindole acetic acid (5-HIAA) in brain of infected models are still unclear. Objective: The purpose of this study was to measure the effect of Mexican arnica/rosemary (MAR) water extract and oseltamivir on both biogenic amines and some oxidative biomarkers in the brain and stomach of young rats under infection condition. Methods: Female Wistar rats (weight 80 g) in the presence of MAR or absence (no-MAR) were treated as follows: group 1, buffer solution (controls); oseltamivir (100 mg/kg), group 2; culture of Salmonella typhimurium (S.Typh) (1 × 106 colony-forming units/rat) group 3; oseltamivir (100 mg/kg) + S.Typh (same dose) group 4. Drug and extracts were administered intraperitoneally every 24 h for 5 days, and S.Typh was given orally on days 1 and 3. On the fifth day, blood was collected to measure glucose and hemoglobin. The brains and stomachs were obtained to measure levels of DA, 5-HIAA, glutathione (GSH), TBARS, H2O2, and total ATPase activity using validated methods. Results: DA levels increased in MAR group treated with oseltamivir alone but decreased in no-MAR group treated with oseltamivir plus S.Typh. 5-HIAA, GSH, and H2O2 decreased in this last group, and ATPase activity increased in MAR group treated with oseltamivir plus S.Typh. TBARS (lipid peroxidation) increased in MAR group that received oseltamivir alone. Most of the biomarkers were not altered significantly in the stomach. Conclusion: MAR extract alters DA and metabolism of 5-HIAA in the brain of young animals infected. Antioxidant capacity may be involved in these effects. Abbreviations used: AS: Automated system, ATP: Adenosine triphosphate, CNS: Central nervous system, CFU: Colony-forming unit, DA: Dopamine EDTA: Ethylenediaminetetraacetic acid, 5-HIAA: écido 5-hidroxindolacético (serotonina), GABA: γ-aminobutyric acid, GSH: Glutathione, H2O2: Hidrogen peroxide, HCLO4: Perchloric acid, iNOS: Inducible nitric oxide synthase, LPS: Lipopolysaccharides, MAR: Arnica/ Rosemary, NaCl: Sodium Chloride, NOGSH: nitrosoglutathione,NOS: Nitric oxide, OPT: Ortho-phtaldialdehyde, Pbs: Phosphate buffered saline, pH: potential of Hydrogen, Pi: Inorganic phosphate, ROS: Reactive oxygen species, RNSs: Reactive nitrogen species Tba: Thiobarbaturic acid, TBARS: Thiobarbituric aid reactive, Tca: Trichloroacetic, Tris-HCL: Tris hydrochloride, TSA: Trypticasein Soya Agar
  2,126 10 -
Genistein-attenuated gastric injury on indomethacin-induced gastropathy in rats
Sarocha Vivatvakin, Duangporn Werawatganon, Kanjana Somanawat, Naruemon Klaikeaw, Prasong Siriviriyakul
April-June 2017, 13(50):306-310
DOI:10.4103/pm.pm_502_16  PMID:28808397
Objectives: To investigates the mucoprotective effect of genistein on gastric injury in rats with indomethacin (IMN)-induced gastropathy. Methods: Male Sprague-Dawley rats were randomly divided into three groups. Group 1 (control; n = 6) was given distilled water (DW). Group 2 (IMN; n = 6) was given indomethacin (IMN) 150 mg/kg dissolved in 5% sodium bicarbonate (NaHCO3-) 1 mL/rat via intragastric tube at time 0 and 4 h. Group 3 (genistein; n = 6) was given genistein 100 mg/kg dissolved in 0.1% dimethyl sulfoxide (DMSO) plus IMN 150 mg/kg at time described as group 2. Four hours after the second dose, the stomach was removed to examine iNOS western blot expression, malondialdehyde (MDA), and histopathologic examination. Serum was collected to determine TNF-alpha and prostaglandin E2(PGE2) levels using ELISA technique. Results: Tissue MDA and serum TNF-alpha were significantly increased in the IMN group, as compared to the control group (9.70 ± 0.40 vs. 1.56 ± 0.14 nmol/mg protein, P = 0.000; 210.28 ± 0.98 vs. 126.4 ± 0.13 pg/mL, P = 0.000, respectively) and decreased in the genistein group when compared to the IMN group (2.87 ± 0.37 vs. 9.70 ± 0.40 nmol/mg protein, P = 0.000; 156.59 ± 0.10 vs. 210.28 ± 0.98 pg/mL, P = 0.000, respectively). Serum PGE2level in IMN group was decreased significantly compared with control group (152.83 ± 0.10 vs. 303.33 ± 2.16 pg/mL, P = 0.000) and increased in the genistein group compared to the IMN group (247.65 ± 0.01 vs. 152.83 ± 0.10 pg/mL, P = 0.000). Expression of tissue iNOS was increased in the IMN group and improved in genistein groups. Most of the rats in the IMN group developed moderate to severe gastric erosion and ulcers. Gastric erosions and neutrophil infiltration score were significantly decreased in the genistein group. Conclusions: Genistein attenuated IMN-induced gastropathy in rats by reducing inflammation, decreasing oxidative stress, restoring mucoprotective function, and improving gastric histopathology. Abbreviations used: NSAIDs: Non-steroidal anti-inflammatory drugs; IMN: Indomethacin; COX: Cyclooxygenase; TNF: Tumor necrosis factor; ICAM: Intercellular adhesion molecule; iNOS: Inducible nitric oxide synthase; MDA: Malondialdehyde; CINC: Cytokine-induced neutrophil chemoattractant.
  1,928 104 3
The effects of Erzincan grape (Vitis vinifera spp., Cimin) and benzothiazol on a Caenorhabditis elegans organism model
Hulya Ozpinar, Necati Ozpinar, Savas Karakus
April-June 2017, 13(50):380-384
DOI:10.4103/0973-1296.210164  PMID:28808410
Background: Grapes and their products are known to have been used for the treatment of diseases throughout history. Objective: It was aimed to investigate the effects of Erzincan Cimin grapes on an organism model of Caenorhabditis elegans N2 wild type and C. elegans BS913 strains with gonad cancer. Materials and Methods: The effects of methanol extracts of the skin and seeds of Erzincan Cimin grapes were examined separately on C. elegans N2 wild type and an effect was determined on lifespan. By applying GS-MS analysis, a potential agent substance was determined in the skin and seed methanol extracts. This substance was purchased and the effects of this substance were investigated on lifespan and fertility in C. elegans BS913 strains with gonad cancer. In addition, the effects on young subjects exposed to this agent substance in L1 form were investigated. Results: Grape seed and skin methanol extract was observed to prolong the lifespan most at a dose of 10 mg/100 mL. Lifespan was determined to be at a maximum in a gonad cancer organism model with benzothiazol at a dose of 50 ppm. At the same dose, positive effects were determined on the fertility of strains with cancer. When the effects of benzothiazol were examined on young L1 forms, an evident retardation of growth was determined at doses of 10, 50, and 100 ppm. Conclusion: Owing to anti-carcinogenic effects of benzothiazol and benzothiazol-derived substances, they can be considered as agent substances in academic studies related to cancer. Abbreviations used: GC-MS: gas chromatography and mass spectrometry; C. elegans: Caenorhabditis elegans; NGM: Nematode growth medium; E. coli: Escherichia coli; FUDR: Fluorodeoxyuridine; LDL: Low-density lipoprotein.
  1,891 113 5
Anti-lipid potential of Drimys brasiliensis
Josueli Merotto, Larissa Vivan Cestonaro, Luciana Grazziotin Rossato-Grando, Luciano de Oliveira Siqueira, Charise Dallazem Bertol
April-June 2017, 13(50):370-374
DOI:10.4103/pm.pm_306_16  PMID:28808408
Background: The traditional use of Drimys brasiliensis Miers (Winteraceae) in the south of Brazil to reduce cholesterol has not been described in scientific literature. Objective: To verify the hypocholesterolemic effects of D. brasiliensis using rats as animal model. Materials and Methods: The bark of D. brasiliensis was extracted with water with further lyophilization and was subjected to phytochemical analysis by high-performance liquid chromatography (HPLC), and free radical scavenging activities by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay to determine antioxidant potential. The hypocholesterolemic activity was determined in male Wistar rats treated with 100 and 250 mg/kg/day extract concomitantly fed a hypercaloric diet, over 20 days (prevention assay). In the treatment assay, rats were fed a hypercaloric diet for 40 days and received the extract (100 mg/kg/day) from day 20. Results: In this research, we found that the extract of the bark of D. brasiliensis was able to reduce the triglycerides significantly and reduce total cholesterol at doses 100 and 250 mg/kg/day and both administration regimens (prevention and treatment) in rats treated with the extract and hypercaloric diet. The extract showed strong antioxidant properties (DPPH assay), probably responsible by hypocholesterolemic activity of the plant. By HPLC, we detected catechin (1.34%), epicatechin (3.48%), rutin (0.86%), caffeic acid (0.45%), and ferulic acid (0.84%) in D. brasiliensis extract. Conclusions: We confirm the popular use of the plant to reduce of cholesterol. Abbreviations used: HPLC: High-performance liquid chromatography; PDA: Photodiode array detector; RS: Reference substances; DPPH: 1,1-diphenyl-2-picrylhydrazyl; VCEAC: Vitamin C equivalent antioxidant capacity.
  1,687 79 -
Azorella compacta infusion activates human immune cells and scavenges free radicals in vitro
Lenka Tumová, Zuzana Dučaiová, José Cheel, Ivan Vokřál, Beatriz Sepúlveda, Doris Vokurková
April-June 2017, 13(50):260-264
DOI:10.4103/0973-1296.204558  PMID:28539718
Background: Azorella compacta is traditionally used in the form of tea (infusion), in the Andean region of South America, to treat various chronic diseases. However, the health-promoting properties of this herbal tea have not yet been extensively explored. Materials and Methods: The free radical scavenging activity of A. compacta infusion (ACI) was evaluated by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical and superoxide anion radical assays. The activation of immune cells by ACI, as determined by cell surface cluster of differentiation 69 expression, was measured by flow cytometry. The qualitative polyphenolic composition of ACI was investigated by HPLC/PDA/ESI-MS, (High-performance liquid chromatography coupled with photodiode array detection and electrospray ionization - mass spectrometry) and the total content of polyphenols was estimated by spectrophotometric methods. Results: Eight polyphenols including chlorogenic acid, 6,8-di-C-hexosyl apigenin, isoorientin, orientin, dicaffeoylquinic acid, biochanin A-O-glucoside, biochanin A-O-(malonyl)-glucoside, and licoisoflavone A were tentatively identified in ACI. The total contents of phenols, flavonoids, and tannins in lyophilized ACI were 5.40 mg/100 mg ACI, 1.79 mg/100 mg ACI, and 1.76 mg/100 mg ACI, respectively. ACI, within the range of 25-400 µg/mL, scavenged DPPH and O2.– by 15-90% and 20-88%, respectively. The human natural killer (NK) cells were substantially activated by ACI, whereas T cells and granulocytes were slightly stimulated. Conclusion: Overall, the results demonstrate the free radical scavenging and immune-stimulating properties of ACI, and support, at least in part, its potential utilization as a functional herbal tea. for preventing chronic diseases and as a nonspecific immune stimulator during human immunosenescence. Abbreviations used: ESI: electrospray ionization, HPLC: high performance liquid chromatography, PDA: photodiode array detector, MS: mass spectrometry, MS/MS: tandem mass spectrometry, MW: molecular weight, m/z: mass-to-charge ratio, FITC: fluorescent isothiocyanate, PE: phycoerythrin
  1,646 8 4