Pharmacognosy Magazine

ORIGINAL ARTICLE
Year
: 2020  |  Volume : 16  |  Issue : 71  |  Page : 510--517

Protective effects of Gracilaria lemaneiformis extract against ultraviolet B-induced damage in HaCaT cells


Yingnian Lu1, Si Mei1, Pan Wang1, Peipei Ouyang2, Xuehua Liao1, Hua Ye1, Kefeng Wu1, Xiaoli Ma1 
1 Guangdong Key Laboratory for Research and Development of Natural Drugs; Marine Medical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, China
2 Guangdong Key Laboratory for Research and Development of Natural Drugs; Department of Pharmacy, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China

Correspondence Address:
Kefeng Wu
Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, Guangdong
China

Background: Gracilaria lemaneiformis is an edible red marine macroalga that contains various active components including phycoerythrin, polysaccharides, and phenolics. In our previous work, crude ethanolic extracts of G. lemaneiformis exhibited potential antioxidative and anti-photoaging activities. Therefore, in this study, we aimed to further investigate the antioxidative and anti-photoaging activities of different fractions of G. lemaneiformis (n-hexane, ethyl acetate, and aqueous fractions [HF, EAF, and AQF, respectively] using ultraviolet B (UVB)-induced HaCaT cells. Materials and Methods: Solvents with different polarity were used to fractionate crude ethanolic extract of G. lemaneiformis. The physicochemical properties of HF, EAF, and AQF were detected by gas chromatography–mass spectrometry, Fourier transform-infrared spectroscopy, and high-performance liquid chromatography–mass spectroscopy. The antioxidant and antiapoptotic effects of the fractions were evaluated by estimating the levels of reactive oxygen species, antioxidant enzymes, and mitochondrial membrane potential (MMP) in UVB-exposed HaCaT cells. Results: According to our results, fatty acids, chlorophyll-a, and soluble polysaccharides were, respectively, present in the HF, EAF, and AQF. Furthermore, both EAF and AQF decreased the UVB-induced apoptosis by decreasing MMP. These results also suggest that EAF and AQF provide cytoprotective effects by activating the antioxidant enzymes. The soluble polysaccharides of AQF and chlorophyll-a of EAF were positively correlated with antioxidant activity. In addition, AQF exhibited stronger antioxidant and anti-photodamage properties than that of other fractions in UVB-radiated HaCaT cells. Conclusion: The results of this study indicated that water-soluble polysaccharides from G. lemaneiformis may be suitable to use as a natural anti-photodamage agent.


How to cite this article:
Lu Y, Mei S, Wang P, Ouyang P, Liao X, Ye H, Wu K, Ma X. Protective effects of Gracilaria lemaneiformis extract against ultraviolet B-induced damage in HaCaT cells.Phcog Mag 2020;16:510-517


How to cite this URL:
Lu Y, Mei S, Wang P, Ouyang P, Liao X, Ye H, Wu K, Ma X. Protective effects of Gracilaria lemaneiformis extract against ultraviolet B-induced damage in HaCaT cells. Phcog Mag [serial online] 2020 [cited 2022 Jun 29 ];16:510-517
Available from: http://www.phcog.com/article.asp?issn=0973-1296;year=2020;volume=16;issue=71;spage=510;epage=517;aulast=Lu;type=0