Pharmacognosy Magazine

ORIGINAL ARTICLE
Year
: 2019  |  Volume : 15  |  Issue : 62  |  Page : 92--103

Erigeron linifolius attenuates lipopolysachharide-induced depressive-like behavior in mice by impeding neuroinflammation, oxido-nitrosative stress, and upregulation of tropomyosin receptor kinase B-derived neurotrophic factor and monoaminergic pathway in the hippocampus


Chandana Choudhury Barua1, Kunjbihari Sulakhiya2, Prakash Haloi1, Lipika Buragohain1, Beenita Saikia1, Iswar Chandra Barua1, Debesh Chandra Pathak3, Shantanu Tamuli4, R Elancheran5, Xinquo Ren6 
1 Department of Pharmacology and Toxicology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
2 NeuroPharmacology Research Lab (NPRL) Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
3 Department of Pathology, College of Veterinary Science, Guwahati, Assam, India
4 Department of Animal Biochemistry, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
5 Drug Discovery Lab, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
6 Department of Psychiatry, Molecular Biology Research Building, University of Illinois, Chicago, Illinois, USA

Correspondence Address:
Chandana Choudhury Barua
Department of Pharmacology and Toxicology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati - 781 022, Assam
India

Background: Immuno-inflammatory, oxido-nitrosative stress, brain-derived neurotrophic factor-tropomyosin receptor kinase (BDNF-TrkB), and monoaminergic pathways involve in the pathophysiology of depression. Erigeron linifolius (EL) possesses antioxidant, anticonvulsant, antitumor, and hypoglycemic activities. Objective: To investigate the effect of EL hydroalcoholic extract (ELHA) against lipopolysachharide (LPS)-induced depressive-like behavior and neurochemical alterations in mice. Materials and Methods: Mice were pretreated with vehicle, imipramine (10 mg/kg, intraperitoneally [i. p.]), and ELHA (100 and 200 mg/kg, per oral) for 14 days, and depressive-like behavior was induced by LPS (0.83 mg/kg, i. p.). Depressive-like behavior in mice was evaluated by open-field test, forced swimming test (FST), and tail suspension test (TST). Cytokines (tumor necrosis factor-alpha [TNF-α], interleukin-1β [IL-1β], IL-6, and IL-10), BDNF, monoamines (noradrenaline [NA], dopamine, 5-hydroxy), and oxido-nitrosative stress parameters (lipid peroxidation [LPO], glutathione [GSH], GSH peroxidase [GPx], catalase [CAT], superoxide dismutase [SOD], nitric oxide) were measured in the hippocampus (HC). Hippocampal caspase-3, nuclear factor-kappa B phosphor 65 (NF-κB p65), nuclear-related factor 2 (Nrf2), and TrkB and BDNF levels were measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and immunoblotting. Results: Liquid chromatography-electrospray ionization-mass spectroscopy (MS)/MS analysis revealed the presence of ambrosin, friedelin, flavone, scopoletin, and luteolin in ELHA. ELHA showed significant antidepressant-like effect by decreasing the immobility time in FST and TST in LPS-challenged mice. Moreover, ELHA significantly attenuated TNF-α, IL-1β, IL-6, and LPO levels in LPS-challenged mice, whereas LPS-induced decrease in hippocampal IL-10, BDNF, GSH, GPx, CAT, SOD, and monoamine levels was also restored significantly by ELHA. RT-PCR and immunobloting results showed that ELHA significantly attenuated the upregulation of Caspase-3, NF-κB, p65, and Nrf2 and downregulation of TrkB and BDNF levels in the HC of LPS-challenged mice. Conclusion: The findings demonstrated antidepressant-like action of ELHA which could be due to the inhibition of neuroinflammation, oxido-nitrosative stress, and upregulation of TrkB-BDNF and monoaminergic pathways in the HC.


How to cite this article:
Barua CC, Sulakhiya K, Haloi P, Buragohain L, Saikia B, Barua IC, Pathak DC, Tamuli S, Elancheran R, Ren X. Erigeron linifolius attenuates lipopolysachharide-induced depressive-like behavior in mice by impeding neuroinflammation, oxido-nitrosative stress, and upregulation of tropomyosin receptor kinase B-derived neurotrophic factor and monoaminergic pathway in the hippocampus.Phcog Mag 2019;15:92-103


How to cite this URL:
Barua CC, Sulakhiya K, Haloi P, Buragohain L, Saikia B, Barua IC, Pathak DC, Tamuli S, Elancheran R, Ren X. Erigeron linifolius attenuates lipopolysachharide-induced depressive-like behavior in mice by impeding neuroinflammation, oxido-nitrosative stress, and upregulation of tropomyosin receptor kinase B-derived neurotrophic factor and monoaminergic pathway in the hippocampus. Phcog Mag [serial online] 2019 [cited 2021 Jun 18 ];15:92-103
Available from: http://www.phcog.com/article.asp?issn=0973-1296;year=2019;volume=15;issue=62;spage=92;epage=103;aulast=Barua;type=0