Pharmacognosy Magazine

ORIGINAL ARTICLE
Year
: 2019  |  Volume : 15  |  Issue : 62  |  Page : 144--149

Bioactive compound of Ocimum sanctum carvacrol supplementation attenuates fluoride toxicity in sodium fluoride intoxicated rats: A study with respect to clinical aspect


Kondeti Ramudu Shanmugam1, Mavulapati Siva2, Sahukari Ravi4, Bhasha Shanmugam4, Kesireddy Sathyavelu Reddy4 
1 Department of Zoology, TRR Government Degree College, Kandukur, Prakasam, India
2 Department of Zoology, TRR Government Degree College, Kandukur, Prakasam; Division of Molecular Biology and Ethanopharmacology, Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India

Correspondence Address:
Kondeti Ramudu Shanmugam
Department of Zoology, TRR Government Degree College, Kandukur, Prakasam - 523 105, Andhra Pradesh
India

Background: Ocimum sanctum (OS) Linn. commonly known as Holy Basil or Tulsi is an Ayurvedic herb of India. The culinary, medicinal, and industrial importance of this plant led to explore its chemical and pharmacological properties. Objective: The present study was carried out to know the anti-oxidant activity of carvacrol bioactive compound of OS in sodium fluoride (NaF) rats and free-radical scavenging activities of OS. Materials and Methods: Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione (GSH), GSH-s-transferase (GST), malonaldehyde (MDA), alanine aminotransferase (AAT), aspartate aminotransferase (AST), alkaline phosphatase (ALKP), calcium (Ca), and phosphorus (P4) levels are estimated in all experimental groups. 2,2-Diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide (H2O2), and hydroxyl radical activities are analyzed in the ethanolic extract of OS. Results: SOD, CAT, GPx, GR, GSH, activities, and Ca levels depleted and GST, MDA, AAT, AST, ALKP, and P4 levels elevated in NaF intoxicated rats. Whereas carvacrol supplementation normalized all the antioxidant enzymes and hepatic markers in NaF toxicity rats. DPPH, H2O2, and hydroxyl radical of OS showed potent free-radical scavenging activities. In addition, histopathological studies also prove that carvacrol protected the liver tissue from fluoride toxicity in rats. Conclusion: The present study revealed that carvacrol of OS modulated the antioxidant enzymes and hepatic stress markers in NaF rats. Our research study will be helpful in the development of new active principle and nutraceuticals in the area of drug resistance and therapeutic compounds against disease vectors.


How to cite this article:
Shanmugam KR, Siva M, Ravi S, Shanmugam B, Reddy KS. Bioactive compound of Ocimum sanctum carvacrol supplementation attenuates fluoride toxicity in sodium fluoride intoxicated rats: A study with respect to clinical aspect.Phcog Mag 2019;15:144-149


How to cite this URL:
Shanmugam KR, Siva M, Ravi S, Shanmugam B, Reddy KS. Bioactive compound of Ocimum sanctum carvacrol supplementation attenuates fluoride toxicity in sodium fluoride intoxicated rats: A study with respect to clinical aspect. Phcog Mag [serial online] 2019 [cited 2021 Apr 19 ];15:144-149
Available from: http://www.phcog.com/article.asp?issn=0973-1296;year=2019;volume=15;issue=62;spage=144;epage=149;aulast=Shanmugam;type=0