Pharmacognosy Magazine

ORIGINAL ARTICLE
Year
: 2019  |  Volume : 15  |  Issue : 60  |  Page : 66--72

Toxicity study of silver nanoparticles synthesized from aqueous flower extract of Scrophularia striata on MCF-7 human breast cancer cell line


Roohangiz Mameneh1, Massoumeh Shafiei2, Ali Aidy1, Elahe Karimi3, Behzad Badakhsh4, Naser Abbasi5 
1 Biotechnology and Medicinal Plants Research Center, Medical School, Ilam University of Medical Sciences, Ilam, Iran
2 Department of Pharmacology, School of Medicine, Iran University of Medical Sciences and Health Services, Tehran, Iran
3 Biotechnology and Medicinal Plants Research Center, Medical School, Ilam University of Medical Sciences; Department of Chemistry, Ilam Branch, Islamic Azad University, Ilam, Iran
4 Department of Internal Medicine, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
5 Biotechnology and Medicinal Plants Research Center; Department of Pharmacology, Medical School, Ilam University of Medical Sciences, Ilam, Iran

Correspondence Address:
Naser Abbasi
Department of Pharmacology, Medical School, Ilam University of Medical Sciences, Ilam
Iran

Background: Silver nanoparticles (AgNPs) have been used as an antimicrobial and disinfectant agent. Nevertheless, there is limited data about antitumor potential. This study has focused on investigating cytotoxic effects of AgNPs from Scrophularia striata flower extract on MCF-7 breast cancer cells and its mechanism of action. Materials and Methods: Thus, a green method was created for the synthesis of AgNPs using an aqueous extract of S. striata flower. Synthesis of AgNPs was described by different analytical techniques including ultraviolet-visible spectrophotometer, field-emission scanning electron microscopy, X-ray diffraction, and Fourier transforms infrared spectroscopy. Cell viability was determined by the 3-[4, 5-dimethylthiazol-2-yl]-a 2,5-diphenyltetrazolium bromide assay. Reactive oxygen species (ROS) formation was measured using probe 2', 7'-dichlorofluorescein diacetate and intracellular calcium (Cai2+) was evaluated with probe flu3-AM. Cells were treated with different concentrations of AgNPs (1, 3, 6, 10, 15, 25, 50, and 100 μg/mL). Results: The results showed that AgNPs hindered cell growth in a dose-dependent manner. AgNPs appeared to have dose-dependent cytotoxicity against MCF-7 cells through activation of the ROS generation and an increase in the intracellular Cai2+ (IC50 52 ± 3.14). Conclusion: In conclusion, the results of this preliminary study demonstrated that AgNPs from S. striata flower extract may be a potential therapeutic agent for human breast cancer treatment. Abbreviations used: S. striata: Scrophularia striata; FESEM: Field-emission scanning electron microscopy; XRD: X-ray diffraction; FTIR: Fourier transforms infrared spectroscopy; MTT: 3-[4, 5-dimethylthiazol-2-yl]-a 2,5-diphenyltetrazolium bromide; ROS: Reactive oxygen species; DCF: 2′, 7′-dichlorofluorescein diacetate; Cai2+: Intracellular calcium.


How to cite this article:
Mameneh R, Shafiei M, Aidy A, Karimi E, Badakhsh B, Abbasi N. Toxicity study of silver nanoparticles synthesized from aqueous flower extract of Scrophularia striata on MCF-7 human breast cancer cell line.Phcog Mag 2019;15:66-72


How to cite this URL:
Mameneh R, Shafiei M, Aidy A, Karimi E, Badakhsh B, Abbasi N. Toxicity study of silver nanoparticles synthesized from aqueous flower extract of Scrophularia striata on MCF-7 human breast cancer cell line. Phcog Mag [serial online] 2019 [cited 2022 Sep 24 ];15:66-72
Available from: http://www.phcog.com/article.asp?issn=0973-1296;year=2019;volume=15;issue=60;spage=66;epage=72;aulast=Mameneh;type=0