Pharmacognosy Magazine

ORIGINAL ARTICLE
Year
: 2018  |  Volume : 14  |  Issue : 56  |  Page : 308--311

Fusaristerol A: A new cytotoxic and antifungal ergosterol fatty acid ester from the endophytic fungus Fusarium sp. associated with Mentha longifolia roots


Sabrin Ragab Mohamed Ibrahim1, Gamal Abdallah Mohamed2, Rwaida Adel Al Haidari3, Amal Abd-Elmoneim Soliman El-Kholy4, Hani Zakaria Asfour5, Mohamed Fathalla Zayed6 
1 Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah 30078, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
2 Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
3 Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah 30078, Medina, Saudi Arabia
4 Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah 30078, Saudi Arabia; Department of Clinical Pharmacy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
5 Department of Medical Microbiology and Parasitology, Faculty of Medicine, Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia
6 Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah 30078, Saudi Arabia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt

Correspondence Address:
Sabrin Ragab Mohamed Ibrahim
Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah 30078, Saudi Arabia. Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526

Background: Endophytic fungi are of a growing interest as prominent sources of structurally unique bioactive natural products. Objective: This study aims to isolate and characterize bio-metabolites from the endophytic fungus Fusarium sp. isolated from Mentha longifolia L. roots as well as to assess the antimicrobial and cytotoxic potential of these metabolites. Materials and Methods: The endophytic fungi Fusarium sp. was cultured on a rice medium. The rice cultures' ethyl acetate extract was separated using various chromatographic techniques (SiO2, RP-18, and sephadex LH-20) to afford four metabolites. Their structural characterization was achieved by various spectroscopic analyses, as well as comparing with the published data. Results: A new ergosterol derivative namely, fusaristerol A (22E,24R-5β,8β-epidioxyergosta-22-en-3β-yl decanoate) (1), along with ergosta-7,22-diene-3β,5α,6β-triol (2), ergosta-5,7,22-triene-3β-ol (3), and (22E,24R)-ergosta-7,22-dien-3β-ol (4), was separated. Fusaristerol A (1) possessed a significant antifungal activity toward Candida albicans with minimum inhibitory concentration (MIC) value of 8.3 μg/disc compared to clotrimazole (MIC 5.1 μg/disc). Moreover, it displayed a potent cytotoxic potential toward HCT-116 cell line with an half maximal inhibitory concentration (IC50) value of 0.21 μM, compared to doxorubicin (IC50 0.06 μM). Conclusion: This is the first report for separation of a 5,8-epidioxy ergostane derivative from Fusarium sp. Fusaristerol A may provide a new promising candidate for the development of a potential anti-candida and cytotoxic agent. Abbreviations used: BT-549: Ductal carcinoma; CC: Column chromatography; COSY: Correlations spectroscopy; CDCl3: Deuterated chloroform; EtOAc: Ethyl acetate; DMSO: Dimethyl sulfoxide; EIMS; Electron-impact mass spectrometry; EP: Ergosterol peroxide; GCMS; Gas chromatography mass spectrometry; HCl: Hydrochloric acid; H2O: Water; H2SO4: Sulfuric acid; HMBC: Heteronuclear multiple bond correlation experiment; HRMS: High-resolution mass spectrometry; HRESIMS: High-resolution electrospray ionization mass spectrometry; HCT-116: Colorectal adenocarcinoma; HSQC: Heteronuclear single-quantum correlation; IC50: Half maximal inhibitory concentration; IR: Infrared; KBr: Potassium bromide; KOH; Potassium hydroxide; LTQ: Linear trap quadruple; MeOH; Methanol; MIC: Minimum inhibitory concentration; MCF-7: Human breast adenocarcinoma; NMR: Nuclear magnetic resonance; PDA: Potato dextrose agar; RP: Reversed phase; SiO2: Silica gel; TLC: Thin-layer chromatography; VLC: Vacuum liquid chromatography.


How to cite this article:
Mohamed Ibrahim SR, Mohamed GA, Al Haidari RA, Soliman El-Kholy AA, Asfour HZ, Zayed MF. Fusaristerol A: A new cytotoxic and antifungal ergosterol fatty acid ester from the endophytic fungus Fusarium sp. associated with Mentha longifolia roots.Phcog Mag 2018;14:308-311


How to cite this URL:
Mohamed Ibrahim SR, Mohamed GA, Al Haidari RA, Soliman El-Kholy AA, Asfour HZ, Zayed MF. Fusaristerol A: A new cytotoxic and antifungal ergosterol fatty acid ester from the endophytic fungus Fusarium sp. associated with Mentha longifolia roots. Phcog Mag [serial online] 2018 [cited 2021 Apr 21 ];14:308-311
Available from: http://www.phcog.com/article.asp?issn=0973-1296;year=2018;volume=14;issue=56;spage=308;epage=311;aulast=Mohamed;type=0