Pharmacognosy Magazine

ORIGINAL ARTICLE
Year
: 2018  |  Volume : 14  |  Issue : 54  |  Page : 235--241

Optimal processing conditions of Boswellia carteri Birdw. using response surface methodology


Jee-Hyun Yoon1, Jung-Hoon Kim2, Seong-Sik Ham1, Bu-Yeon Gang1, Seung-Ho Lee3, Goya Choi4, Young-Sik Kim5, Guemsan Lee6, Young-Sung Ju1 
1 Department of Herbology, College of Korean Medicine, Woosuk University, Jeonju-si, Jeollabuk-do 54986, Republic of Korea
2 Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan-si, Gyeongsangnam-do 50612, Republic of Korea
3 Mibyeong Research Center, Korea Institute of Oriental Medicine, Yuseong-gu, Daejeon 34054, Republic of Korea
4 K–Herb Research Center, Korea Institute of Oriental Medicine, Yuseong-gu, Daejeon 34054, Republic of Korea
5 Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
6 Department of Herbology, College of Korean Medicine, Wonkwang University, Iksan-si, Jeollabuk-do 54538, Republic of Korea

Correspondence Address:
Young-Sung Ju
Department of Herbology, College of Korean Medicine, Woosuk University, 61, Seonneomeo 3-gil, Wansan-gu, Jeonju-si, Jeollabuk-do 54986
Republic of Korea

Background: Boswellia carteri Bridw. is being widely used for its anti-inflammatory properties, as well as for wound healing, antimicrobial, and immunomodulatory properties, and boswellic acids (BAs) are considered to be the main active constituents. Objectives: To investigate optimal conditions of stir-baking process for the resin of B. carteri with vinegar of using response surface methodology (RSM). Materials and Methods: The concentration of acetic acid, heating temperature, and heating time were set as influential factors, and the yields of chemical compounds were the response values which were optimally designed by a Box–Behnken design. The amounts of 11-keto-β-boswellic acid (KBA) and α-boswellic acid (αBA) in B. carteri resin were quantified using high-performance liquid chromatography analysis. Results: Maximum amounts of KBA and αBA in B. carteri resin were obtained using 6% acetic acid for 10 min at 90°C in preliminary test. Two factor interactions, such as acetic acid concentration–heating temperature and heating temperature–heating time, were significantly observed by multiple regression analysis. Optimal processing conditions from RSM were 5.83% for acetic acid concentration, 9.56 min for heating time, and 89.87°C for heating temperature. Under the modified conditions, the experimental value of the response was 11.25 mg/g, which was similar to the predicted value. Conclusions: The results suggest that the optimal conditions for the stir-baking process of B. carteri resin were determined by RSM, which was reliable and applicable to practical processing of herbal medicine. Abbreviations used: BAs: Boswellic acids; KBA: 11 keto β boswellic acid; αBA: α boswellic acid; BBD: Box–Behnken design; RSM: Response surface method; HPLC: High performance liquid chromatography; LOD: Limits of determination; LOQ: Limits of quantification; RSD: Relative standard deviation; ANOVA: Analysis of variance.


How to cite this article:
Yoon JH, Kim JH, Ham SS, Gang BY, Lee SH, Choi G, Kim YS, Lee G, Ju YS. Optimal processing conditions of Boswellia carteri Birdw. using response surface methodology.Phcog Mag 2018;14:235-241


How to cite this URL:
Yoon JH, Kim JH, Ham SS, Gang BY, Lee SH, Choi G, Kim YS, Lee G, Ju YS. Optimal processing conditions of Boswellia carteri Birdw. using response surface methodology. Phcog Mag [serial online] 2018 [cited 2021 Nov 27 ];14:235-241
Available from: http://www.phcog.com/article.asp?issn=0973-1296;year=2018;volume=14;issue=54;spage=235;epage=241;aulast=Yoon;type=0