Pharmacognosy Magazine

ORIGINAL ARTICLE
Year
: 2018  |  Volume : 14  |  Issue : 53  |  Page : 76--80

Antibacterial activity of Azadirachta indica, Pongamia pinnata, Psidium guajava, and Mangifera indica and their mechanism of action against Streptococcus mutans


Dikonketso Cathrine Bodiba1, Preety Prasad2, Ajay Srivastava2, Brigdet Crampton1, Namrita Sharan Lall1 
1 Department of Integrated Plant and Soil Sciences (Medicinal Plant Sciences), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
2 Department of Integrated Plant and Soil Sciences (Medicinal Plant Sciences), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa; Department of Botany, St. Xavier's College, Ranchi, Jharkhand, India

Correspondence Address:
Namrita Sharan Lall
Department of Integrated Plant and Soil Sciences (Medicinal Plant Sciences), University of Pretoria, Main Campus Plant Science Complex, Lynwood Road, Hatfield, Pretoria
South Africa

Background: Curative plants have reportedly been used to make chewing sticks/toothbrushes intended for the treatment of oral diseases. Objective: The in vitro antibacterial activities of Azadirachta indica, Pongamia pinnata, Psidium guajava, and Mangifera indica were evaluated against Streptococcus mutans, along with the cytotoxicity and antioxidant and synergistic potentials. The effect of M. indica on the expression of crucial virulence genes spaP and gtfB of S. mutans was determined. Materials and Methods: The antibacterial activity was determined using a modified microdilution method. The antioxidant potential was evaluated using diphenyl picrylhydrazyl (DPPH), Griess reagent, and nitroblue tetrazolium calorimetric assays. The synergistic activity was investigated using a modified checkerboard method, while the cytotoxicity was determined according to a cell proliferation 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt assay. Reverse transcription was the chosen method for determining the difference in expression of the spaP and gtfB genes after treatment with the plant sample. Results: M. indica and A. indica had the highest antibacterial activity at concentrations of 0.3 mg/ml and 6.25 mg/ml, respectively. A. indica had the best free radical scavenging of DPPH, exhibiting 50% inhibition at 28.72 μg/ml; while M. indica showed better superoxide scavenging potential than the positive control quercetin. Both M. indica and A. indica had adequate activity against the nitric oxide-free radical (12.87 and 18.89 μg/ml, respectively). M. indica selectively reduced the expression of the gtfB gene, indicating a mechanism involving Glucotranferases, specifically targeting bacterial attachment. Conclusion: The overall good antibacterial activity of M. indica correlated with the general good antioxidant capacity, while showing a potentially unique mechanism of bacterial inhibition, targeting virulence gene expression. Abbreviations used: AA: Ascorbic acid; BHI: Brain–heart infusion; CHX: Chlorhexidine; DPPH: Diphenyl picrylhydrazyl; DMSO: Dimethlysulfoxide; NBT: Nitroblue tetrazolium; NO: Nitric oxide; XTT: 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5 -carboxanilide salt.


How to cite this article:
Bodiba DC, Prasad P, Srivastava A, Crampton B, Lall NS. Antibacterial activity of Azadirachta indica, Pongamia pinnata, Psidium guajava, and Mangifera indica and their mechanism of action against Streptococcus mutans.Phcog Mag 2018;14:76-80


How to cite this URL:
Bodiba DC, Prasad P, Srivastava A, Crampton B, Lall NS. Antibacterial activity of Azadirachta indica, Pongamia pinnata, Psidium guajava, and Mangifera indica and their mechanism of action against Streptococcus mutans. Phcog Mag [serial online] 2018 [cited 2021 Jun 25 ];14:76-80
Available from: http://www.phcog.com/article.asp?issn=0973-1296;year=2018;volume=14;issue=53;spage=76;epage=80;aulast=Bodiba;type=0