Pharmacognosy Magazine

ORIGINAL ARTICLE
Year
: 2018  |  Volume : 14  |  Issue : 53  |  Page : 36--43

Modeling and optimum extraction of multiple bioactive exopolysaccharide from an endophytic fungus of Crocus sativus L


Lu Wen1, Yuan Xu1, Qiqiu Wei1, Wuhai Chen1, Gang Chen2 
1 Department of Medicinal Chemistry, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
2 Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China

Correspondence Address:
Gang Chen
School of Pharmacy, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006
China

Background: Crocus sativus L. (saffron) is a scarce plant that has been used as food flavoring agent, coloring agent, and traditional herbal medicine. Methods: The bioactivity of exopolysaccharide (EPS) extracted from an endophytic fungus of C. sativus was examined for the first time by antioxidative, antitumor, and antibacterial assays. The extraction conditions for EPS were optimized by combining the response surface methodology with Box-Behnken design. Results: EPS exhibited excellent scavenging activities against 1,1-diphenyl-2-picrylhydrazyl, hydroxyl and superoxide anion radicals, and moderate cytotoxicities against K562, A549, HL-60, and HeLa cells. The optimum extraction conditions for EPS were as follows: precipitation time of 16 h, precipitation temperature of 3.7°C, pH 7.2, and ratio of ethanol to fermented broth of 5:1 (L/L). Under the optimized conditions, the yield of EPS reached 162 ± 6 μg/L which was close to the predicted one (165 μg/L). Moreover, high-performance liquid chromatography of monosaccharide composition showed that EPS comprised mannose, glucose, galactose xylose, and arabinose in a molar ratio of 25.6:16.5:1.0:3.8:5.4. Conclusion: EPS may be an eligible substitute for C. sativus and a potential bioactive source applicable to pharmaceutical and food industries. Abbreviations used: EPS: Exopolysaccharide, RSM: Response surface methodology, BBD: Box-Behnken design, DPPH: 1,1-diphenyl-2-picrylhydrazyl, VC: Ascorbic acid, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, LB: Luria Bertani, DMSO: dimethyl sulfoxide, PMP: 1-phenyl-3-methyl-5-pyrazolone, FT-IR: Fourier transform-infrared, HPLC: High-performance liquid chromatography, 3D: Three-dimensional, 2D: Two-Dimensional.


How to cite this article:
Wen L, Xu Y, Wei Q, Chen W, Chen G. Modeling and optimum extraction of multiple bioactive exopolysaccharide from an endophytic fungus of Crocus sativus L.Phcog Mag 2018;14:36-43


How to cite this URL:
Wen L, Xu Y, Wei Q, Chen W, Chen G. Modeling and optimum extraction of multiple bioactive exopolysaccharide from an endophytic fungus of Crocus sativus L. Phcog Mag [serial online] 2018 [cited 2021 Jun 25 ];14:36-43
Available from: http://www.phcog.com/article.asp?issn=0973-1296;year=2018;volume=14;issue=53;spage=36;epage=43;aulast=Wen;type=0