Pharmacognosy Magazine

ORIGINAL ARTICLE
Year
: 2017  |  Volume : 13  |  Issue : 52  |  Page : 731--736

Zerumbone suppresses angiogenesis in HepG2 cells through inhibition of matrix Metalloproteinase-9, vascular endothelial growth factor, and vascular endothelial growth factor receptor expressions


Nozlena Abdul Samad1, Ahmad Bustamam Abdul2, Heshu Sulaiman Rahman3, Abdullah Rasedee4, Tengku Azmi Tengku Ibrahim4, Yeap Swee Keon4 
1 UPM-MAKNA, Cancer Research Laboratory, Institute of Bioscience, Universiti Putra, Malaysia, 43400 UPM Serdang, Selangor; Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
2 UPM-MAKNA, Cancer Research Laboratory, Institute of Bioscience, Universiti Putra, Malaysia, 43400 UPM Serdang, Selangor, Malaysia
3 Department of Clinic and Internal Medicine, College of Veterinary Medicine, University of Sulaimani; Department of Medical Laboratory Sciences, College of Health Sciences, Komar University of Science and Technology, Chaq Chaq Qularaese, Sulaimani City, Kurdistan Region, Northern Iraq; Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
4 UPM-MAKNA, Cancer Research Laboratory, Institute of Bioscience, Universiti Putra, Malaysia, 43400 UPM Serdang; Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Correspondence Address:
Nozlena Abdul Samad
Integrative Medicine Cluster, Advance Medical and Dental Institute, University Sains Malaysia, 13200 Bertam Kepala Batas, Penang
Malaysia

Context: Due to increase in the number of patients with impaired immunity, the incidence of liver cancer has increased considerably. Aims: The aim of this study is the investigation the in vitro anticancer effect of zerumbone (ZER) on hepatocellular carcinoma (HCC). Materials and Methods: The anticancer mechanism of ZER was determined by the rat aortic ring, human umbilical vein endothelial cells (HUVECs) proliferation, chorioallantoic membrane, cell migration, and proliferation inhibition assays. Results: Our results showed that ZER reduced tube formation by HUVECs effectively inhibits new blood vessel and tissue matrix formation. Western blot analysis revealed that ZER significantly (P < 0.05) decreased expression of molecular effectors of angiogenesis, the matrix metalloproteinase-9, vascular endothelial growth factor (VEGF), and VEGF receptor proteins. We found that ZER inhibited the proliferation and suppressed migration of HepG2 cell in dose-dependent manner. Statistical Analysis Used: Statistical analyses were performed according to the Statistical Package for Social Science (SPSS) version 17.0. The data were expressed as the mean ± standard deviation and analyzed using a one-way analysis of variance. A P < 0.05 was considered statistically significant. Conclusion: The study for the first time showed that ZER is an inhibitor angiogenesis, tumor growth, and spread, which is suggested to be the mechanisms for its anti-HCC effect. Abbreviations used: ZER: Zerumbone, MMP-9: Matrix metalloproteinase-9, VEGF: Vascular endothelial growth factor, VEGFR: Vascular endothelial growth factor receptor, HUVECs: Human umbilical vein endothelial cells, HCC: Hepatocellular carcinoma, HIFCS: Heat inactivated fetal calf serum, DMSO: Dimethyl sulfoxide, EDTA: Ethyldiaminetetraacetic acid, Ig: Immunoglobulin, CAM: Chorioallantoic membrane, HRP: Horseradish peroxidase, NIH: National Institutes of Health, MTT: Microtetrazolium, SPSS: Statistical Package for Social Science.


How to cite this article:
Samad NA, Abdul AB, Rahman HS, Rasedee A, Tengku Ibrahim TA, Keon YS. Zerumbone suppresses angiogenesis in HepG2 cells through inhibition of matrix Metalloproteinase-9, vascular endothelial growth factor, and vascular endothelial growth factor receptor expressions.Phcog Mag 2017;13:731-736


How to cite this URL:
Samad NA, Abdul AB, Rahman HS, Rasedee A, Tengku Ibrahim TA, Keon YS. Zerumbone suppresses angiogenesis in HepG2 cells through inhibition of matrix Metalloproteinase-9, vascular endothelial growth factor, and vascular endothelial growth factor receptor expressions. Phcog Mag [serial online] 2017 [cited 2022 Dec 1 ];13:731-736
Available from: http://www.phcog.com/article.asp?issn=0973-1296;year=2017;volume=13;issue=52;spage=731;epage=736;aulast=Samad;type=0