Pharmacognosy Magazine

ORIGINAL ARTICLE
Year
: 2017  |  Volume : 13  |  Issue : 51  |  Page : 512--518

Molecular docking analysis of phytic acid and 4-hydroxyisoleucine as cyclooxygenase-2, microsomal prostaglandin E synthase-2, tyrosinase, human neutrophil elastase, matrix metalloproteinase-2 and -9, xanthine oxidase, squalene synthase, nitric oxide synthase, human aldose reductase, and lipoxygenase inhibitors


Radhakrishnan Narayanaswamy1, Lam Kok Wai2, Norhaizan Mohd Esa3 
1 Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Bio Waste Management Laboratory, Vel Tech Technology Incubator, Veltech Dr. RR & Dr. SR University, 400 Feet Outer Ring Road, Avadi, Chennai, Tamil Nadu, India
2 Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
3 Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences; Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Correspondence Address:
Norhaizan Mohd Esa
Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor
Malaysia

Background: The phytoconstituents phytic acid and 4-hydroxyisoleucine have been reported to posses various biological properties. Objective: This prompted us to carry out the docking study on these two ligands (phytic acid & 4-hydroxyisoleucine) against eleven targeted enzymes. Materials and Methods: Phytic acid & 4-hydroxyisoleucine were evaluated on the docking behaviour of cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-2 (mPGES-2), tyrosinase, human neutrophil elastase (HNE), matrix metalloproteinase (MMP 2 and 9), xanthine oxidase (XO), squalene synthase (SQS), nitric oxide synthase (NOS), human aldose reductase (HAR) and lipoxygenase (LOX) using Discovery Studio Version 3.1 (except for LOX, where Autodock 4.2 tool was used). Results: Docking and binding free energy analysis revealed that phytic acid exhibited the maximum binding energy for four target enzymes such as COX-2, mPGES-2, tyrosinase and HNE. Interestingly, we found that 4-hydroxyisoleucine has the potential to dock and bind with all of the eleven targeted enzymes. Conclusion: This present study has paved a new insight in understanding 4-hydroxyisoleucine as potential inhibitor against COX-2, mPGES-2, tyrosinase, HNE, MMP 2, MMP 9, XO, SQS, NOS, HAR and LOX. Abbreviations used: COX-2: Cyclooxygenase-2, mPGES-2: Microsomal prostaglandin E synthase-2, HNE: Human neutrophil elastase, MMP-2 and -9: Matrix metalloproteinase-2 and -9, XO: Xanthine oxidase, SQS: Squalene synthase, NOS: Nitric oxide synthase, HAR: Human aldose reductase, LOX: Lipoxygenase, ADME: Absorption, distribution, metabolism, and excretion, TOPKAT: Toxicity Prediction by Computer-assisted Technology.


How to cite this article:
Narayanaswamy R, Wai LK, Esa NM. Molecular docking analysis of phytic acid and 4-hydroxyisoleucine as cyclooxygenase-2, microsomal prostaglandin E synthase-2, tyrosinase, human neutrophil elastase, matrix metalloproteinase-2 and -9, xanthine oxidase, squalene synthase, nitric oxide synthase, human aldose reductase, and lipoxygenase inhibitors.Phcog Mag 2017;13:512-518


How to cite this URL:
Narayanaswamy R, Wai LK, Esa NM. Molecular docking analysis of phytic acid and 4-hydroxyisoleucine as cyclooxygenase-2, microsomal prostaglandin E synthase-2, tyrosinase, human neutrophil elastase, matrix metalloproteinase-2 and -9, xanthine oxidase, squalene synthase, nitric oxide synthase, human aldose reductase, and lipoxygenase inhibitors. Phcog Mag [serial online] 2017 [cited 2021 Dec 5 ];13:512-518
Available from: http://www.phcog.com/article.asp?issn=0973-1296;year=2017;volume=13;issue=51;spage=512;epage=518;aulast=Narayanaswamy;type=0