Pharmacognosy Magazine

ORIGINAL ARTICLE
Year
: 2017  |  Volume : 13  |  Issue : 50  |  Page : 281--285

Effect of Helix aspersa extract on TNFα, NF-κB and some tumor suppressor genes in breast cancer cell line Hs578T


Ibtissem El Ouar1, Cornelia Braicu2, Dalila Naimi1, Alexendru Irimie3, Ioana Berindan-Neagoe4 
1 Laboratory of Microbiological Engineering and Application, University Mentouri Constantine, Algeria
2 Department of Functional Genomics and Experimental Pathology, Cancer Institute “Ion Chiricuta”, Cluj-Napoca; Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu. University of Medicine and Pharmacy, Cluj-Napoca, Romania
3 Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu. University of Medicine and Pharmacy, Cluj-Napoca; Department of Surgery,Iuliu Hatieganu. University of Medicine and Pharmacy, Cluj-Napoca; Department of Surgical Oncology, Iuliu Hatieganu. University of Medicine and Pharmacy, Cluj-Napoca, Romania
4 Department of Functional Genomics and Experimental Pathology, Cancer Institute “Ion Chiricuta”, Cluj-Napoca; Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu. University of Medicine and Pharmacy, Cluj-Napoca; Department of Immunology, Iuliu Hatieganu. University of Medicine and Pharmacy, Cluj-Napoca, Romania

Correspondence Address:
Dr. Ibtissem El Ouar
Faculty of Nature And Life Sciences, University Mentouri, road Ain el bey –Constantine
Algeria

Background: The garden snail, Helix aspersa, is a big land snail widely found in the Mediterranean countries. It is one of the most consumed species and widely used in zootherapy. Objective: The present study was carried out to investigate for the first time the first time the antitumor activity of an aqueous extract from Helix aspersa. Materials and Methods: The effect of H. aspersa extract was studied on a triple negative breast cancer cell line Hs578T. Firstly, the morphological changes and the mode of cell death induced by the extract have been evaluated by microscopy and acridine orange/ethidium bromide staining. The effect of the extract at dilution 0.1% and 1% was then tested on some genes, regulators of cell death and proliferation like tumor necrosis factor α (TNFα), NF- κB, and the tumor suppressor genes P53 and PTEN. Results: Data demonstrate that the extract induces necrosis in tumor cells. It enhances significantly the expression of TNFα; mRNA levels were 20 and 10 times more important in treated cells compared to nontreated cells. NF-κB and PTEN were inhibited with the dilution 1% after 8 and 24 hours of treatment. P53 expression was further inhibited but only with the highest dose, after 4, 8, and 24 hours. Conclusion: Our results show that H. aspersa extract has an antitumor activity against Hs578T cells; it is a potent stimulator for TNFα and a good inhibitor for NF-κB. Abbreviations used: AO: acridine orange; Bcl-2: B cell lymphoma 2. cDNA: complementary DNA; ELISA: enzyme linked immunosorbent assay; EB: ethidium bromide; IC50: the half maximal inhibitory concentration; mRNA: messenger RNA. MAPK: mitogen-activated protein kinase; NF-κB: nuclearfactorkappa B; PBS: phosphate buffered saline. PI3K: phospho-inositol 3 kinase; PTEN: phosphatase and tensin homolog; ROS: reactive oxygen species. RT-PCR: reverse transcription polymerase chain reaction; TNFα: tumor necrosis factor alpha. TNFR1: TNF receptor-1; TP53: tumor protein 53


How to cite this article:
El Ouar I, Braicu C, Naimi D, Irimie A, Berindan-Neagoe I. Effect of Helix aspersa extract on TNFα, NF-κB and some tumor suppressor genes in breast cancer cell line Hs578T.Phcog Mag 2017;13:281-285


How to cite this URL:
El Ouar I, Braicu C, Naimi D, Irimie A, Berindan-Neagoe I. Effect of Helix aspersa extract on TNFα, NF-κB and some tumor suppressor genes in breast cancer cell line Hs578T. Phcog Mag [serial online] 2017 [cited 2021 Apr 19 ];13:281-285
Available from: http://www.phcog.com/article.asp?issn=0973-1296;year=2017;volume=13;issue=50;spage=281;epage=285;aulast=El;type=0