Pharmacognosy Magazine

ORIGINAL ARTICLE
Year
: 2017  |  Volume : 13  |  Issue : 50  |  Page : 174--178

Anti-inflammatory potential of Petiveria alliacea on activated RAW264.7 murine macrophages


Rosa Martha Perez Gutierrez1, Carlos Hoyo-Vadillo2 
1 Laboratory of the Research of Natural Products , School of Chemical Engineering and Extractive Industries, National Polytechnic Institute, Av. Instituto Politécnico Nacional S / N Ciudad de Mexico, CP 07758, Mexico
2 Deparment of Pharmacology, Cinvestav-IPN, Av. National Polytechnic Institute 2508, Zacatenco, Mexico City, 07360, Mexico

Correspondence Address:
Rosa Martha Perez Gutierrez
Laboratory of Natural Products Research, School of Chemical Engineering and Extractive Industries, National Polytechnic Institute (IPN), Av. Politecnico Nacional S / N, Col. San Pedro Zacatenco, Mexico City, CP 07360
Mexico

Background: Defense and protection to multiple harmful stimuli are the inflammation, when is self-amplified and uncontrolled is the basis of the pathogenesis of a wide variety of inflammatory illness. The aim of this study was to evaluate if Petiveria alliacea could attenuate inflammation in a murine model of RAW264 macrophages the involved model and its involved mechanism. Materials and Methods: The ethanol extract from P. alliacea was precipitated with water and supernatant was used for this study (PW). The anti-inflammatory effects of PW were investigated through evaluating of the production of several cytokines, chemokines, and expression of nuclear factor-kappa B (NF-κB) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Also was determined the ability to decrease the oxidative stress in RAW264.7 cells with carboxy-2',7'-dichloro-dihydro-fluorescein diacetate. Results: PW significantly suppress the secretion of prostaglandin E2, leukotriene C4, interleukin (IL)-1 β, IL-6, IL-10, interferon gamma nitric oxide (NO), inducible NO synthase, IL-1 β, IL-4, in RAW264.7 cells in a dose-dependent manner. In addition, PW also markedly inhibited the transcriptional activity of NF-κB. PW produced significant anti-inflammatory activity through inhibiting the production of inflammatory mediators through the NF-κB inactivation in the LPS-stimulated RAW24.7 cells. Conclusions: PW exerts significant antioxidant and anti-inflammatory activities, and this effect can be attributed in part, to the presence of dibenzyl disulfide, dibenzyl trisulfide pinitol, coumarin, myricetin, glutamyl-S-benzyl cysteine, and petiveriins A and B. Abbreviations used: COX-2: Ciclooxigenasa 2; DCFHDA: Carboxy-2',7'-dichloro-dihydro-fluorescein diacetate; DMEM: Dulbecco's modified eagle's medium; FBS: Fetal bovine serum; HSP70: Heat shock protein; IFN-γ: Interferon gamma; IL-1 β: Interleukin 1 β, IL-6: Interleukin 6; IL-10: Interleukin 10; IL-4: Interleukin 4; iNOS: Nitric oxide synthase; KCl: Potassium chloride; LPS: Lipopolysaccharides; LTC4: leukotriene C 4; MgCl2: Magnesium chloride; MTT: 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide; NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B-cells or transcriptional activity of nuclear factor-kB; NO: Nitric oxide; PBS: Phosphate-buffered saline; PGE2: Prostaglandin E2, PMSF: Phenylmethylsulfonyl fluoride; PTC: Chloroform extract from Petiveria alliacea; PE: Ethanol extract from Petiveria alliacea; PTH: Hexane extract from Petiveria alliacea; PW: Supernatant of PTE precipitated with water; RAW264.7: Cell line murine macrophages; ROS: Reactive oxygen species; TNF-α: Tumor necrosis factor.


How to cite this article:
Gutierrez RM, Hoyo-Vadillo C. Anti-inflammatory potential of Petiveria alliacea on activated RAW264.7 murine macrophages.Phcog Mag 2017;13:174-178


How to cite this URL:
Gutierrez RM, Hoyo-Vadillo C. Anti-inflammatory potential of Petiveria alliacea on activated RAW264.7 murine macrophages. Phcog Mag [serial online] 2017 [cited 2022 Jan 22 ];13:174-178
Available from: http://www.phcog.com/article.asp?issn=0973-1296;year=2017;volume=13;issue=50;spage=174;epage=178;aulast=Gutierrez;type=0