Pharmacognosy Magazine

ORIGINAL ARTICLE
Year
: 2014  |  Volume : 10  |  Issue : 37  |  Page : 176--180

Optimization of genetic transformation of Artemisia annua L. Using Agrobacterium for Artemisinin production


Elfahmi1, Sony Suhandono2, Agus Chahyadi1 
1 Pharmaceutical Biology Research Group, School of Pharmacy, Institut Teknologi Bandung, West Java, Indonesia
2 Plant Molecular Biology, School of Life Sciences and Technology, Institut Teknologi Bandung, West Java, Indonesia

Correspondence Address:
Elfahmi
Pharmaceutical Biology Research Group, School of Pharmacy, Institute Teknologi Bandung, Ganesha 10, Bandung - 40132, West Java
Indonesia

Background: Artemisinin, a sesquiterpene lactone endoperoxide isolated from the medicinal plant Artemisia annua L., is a choice and effective drug for malaria treatment. Due to the low yield of artemisinin in plants, there is a need to enhance the production of artemisinin from A. annua and biotechnological technique may be one of the methods that can be used for the purpose. Aim: To study the transformation efficiency of Agrobacterium tumefaciens in A. annua that could be applied to enhance the production of artemisinin by means of transgenic plants. Setting and Designs: The factors influencing Agrobacterium-mediated transformation of A. annua were explored to optimize the transformation system, which included A. tumefaciens strain and effect of organosilicone surfactants. Three strains of A. tumefaciens, that is, LBA4404, GV1301, and AGL1 harboring the binary vector pCAMBIA 1303 have been used for transformation. The evaluation was based on transient β-glucuronidase (GUS). Materials and Methods: Plant cell cultures were inniatiated from the seeds of A. annua using the germination Murashige and Skoog medium. A. tumefaciens harboring pCAMBIA were tranformed into the leaves of A.annua cultures from 2-week-old-seedling and 2-month-old-seedling for 15 min by vacuum infiltration. Transformation efficiency was determinated by measuring of blue area (GUS expression) on the whole leaves explant using ImageJ 1.43 software. Two organosilicon surfactants, that is, Silwet L-77 and Silwet S-408 were used to improve the transformation efficiency. Results: The transformation frequency with AGL1 strain was higher than GV3101 and LBA4404 which were 70.91, 49.25, and 45.45%, respectively. Effect of organosilicone surfactants, that is, Silwet L-77 and Silwet S-408 were tested on A. tumefaciens AGL1 and GV3101 for their level of transient expression, and on A. rhizogenes R1000 for its hairy root induction frequency. For AGL1, Silwet S-408 produced higher level of expression than Silwet L-77, were 2.3- and 1.3-fold, respectively. For GV3101, Silwet L-77 was still higher than Silwet S-408, were 1.5- and 1.4-fold, respectively. However, GV3101 produced higher levels of expression than AGL1. The area of GUS expression spots of AGL1, LBA4404, and GV3101 strains was 53.43%, 41.06%, and 30.51%, respectively. Conclusion: A. tumefaciens AGl1 strain was the most effective to be transformed in to A. annua than GV3101 and LBA4404 strain. Surfactant Silwet S-408 produced the highest efficiency of transformation.


How to cite this article:
Elfahmi, Suhandono S, Chahyadi A. Optimization of genetic transformation of Artemisia annua L. Using Agrobacterium for Artemisinin production.Phcog Mag 2014;10:176-180


How to cite this URL:
Elfahmi, Suhandono S, Chahyadi A. Optimization of genetic transformation of Artemisia annua L. Using Agrobacterium for Artemisinin production. Phcog Mag [serial online] 2014 [cited 2022 Jan 21 ];10:176-180
Available from: http://www.phcog.com/article.asp?issn=0973-1296;year=2014;volume=10;issue=37;spage=176;epage=180;aulast=Elfahmi,;type=0