Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 

    Article Cited by others

ORIGINAL ARTICLE

Curcumin increases rat mesenchymal stem cell osteoblast differentiation but inhibits adipocyte differentiation

Gu Qiaoli, Cai Yan, Huang Chen, Shi Qin, Yang Huilin

Year : 2012| Volume: 8| Issue : 31 | Page no: 202-208

   This article has been cited by
 
1 Synthesis, characterization, and evaluation of curcumin-loaded endodontic reparative material
Mahdieh Alipour, Sadaf Fadakar, Marziyeh Aghazadeh, Roya Salehi, Hossein Samadi Kafil, Leila Roshangar, Ensieh Mousavi, Zahra Aghazadeh
Journal of Biochemical and Molecular Toxicology. 2021; 35(9)
[Pubmed]  [Google Scholar] [DOI]
2 Curcumin restores the engraftment capacity of aged hematopoietic stem cells and also reduces PD-1 expression on cytotoxic T cells
Prajakta Shinde, Rutuja Kuhikar, Rohan Kulkarni, Nikhat Khan, Lalita Limaye, Vaijayanti Kale
Journal of Tissue Engineering and Regenerative Medicine. 2021; 15(4): 388
[Pubmed]  [Google Scholar] [DOI]
3 Antibacterial activity and biocompatibility of curcumin/TiO2 nanotube array system on Ti6Al4V bone implants
Sahely Saha, Krishna Pramanik, Amit Biswas
Materials Technology. 2021; 36(4): 221
[Pubmed]  [Google Scholar] [DOI]
4 Complex effect of continuous curcumin exposure on human bone marrow-derived mesenchymal stem cell regenerative properties through matrix metalloproteinase regulation
Qichen Yang, Samantha Antonio Leong, Kwok Ping Chan, Xiang-Ling Yuan, Tsz Kin Ng
Basic & Clinical Pharmacology & Toxicology. 2021; 128(1): 141
[Pubmed]  [Google Scholar] [DOI]
5 Osteogenic Differentiation of Mesenchymal Stem Cells via Curcumin-Containing Nanoscaffolds
Khadijeh Khezri, Solmaz Maleki Dizaj, Yalda Rahbar Saadat, Simin Sharifi, Shahriar Shahi, Elham Ahmadian, Aziz Eftekhari, Elaheh Dalir Abdolahinia, Farzaneh Lotfipour, Dunfang Zhang
Stem Cells International. 2021; 2021: 1
[Pubmed]  [Google Scholar] [DOI]
6 Shared Genetic and Epigenetic Mechanisms between the Osteogenic Differentiation of Dental Pulp Stem Cells and Bone Marrow Stem Cells
Sebastian Gaus, Hanluo Li, Simin Li, Qian Wang, Tina Kottek, Sebastian Hahnel, Xiangqiong Liu, Yupei Deng, Dirk Ziebolz, Rainer Haak, Gerhard Schmalz, Lei Liu, Vuk Savkovic, Bernd Lethaus, Min Tang
BioMed Research International. 2021; 2021: 1
[Pubmed]  [Google Scholar] [DOI]
7 Early Osteogenic Differentiation Stimulation of Dental Pulp Stem Cells by Calcitriol and Curcumin
Mohammad Samiei, Atefeh Abedi, Simin Sharifi, Solmaz Maleki Dizaj, Francisco J. Rodr guez Lozano
Stem Cells International. 2021; 2021: 1
[Pubmed]  [Google Scholar] [DOI]
8 The protective role of curcumin against toxic effect of nonylphenol on bone development
P Alisan Suna, O Cengiz, A Ceyhan, E Atay, T Ertekin, M Nisari, A Yay
Human & Experimental Toxicology. 2021; : 0960327121
[Pubmed]  [Google Scholar] [DOI]
9 Polyphenols-loaded electrospun nanofibers in bone tissue engineering and regeneration
Iruthayapandi Selestin Raja, Desingh Raj Preeth, Mohan Vedhanayagam, Suong-Hyu Hyon, Dohyung Lim, Bongju Kim, Subramaniyam Rajalakshmi, Dong-Wook Han
Biomaterials Research. 2021; 25(1)
[Pubmed]  [Google Scholar] [DOI]
10 Functionalization with a Polyphenol-Rich Pomace Extract Empowers a Ceramic Bone Filler with In Vitro Antioxidant, Anti-Inflammatory, and Pro-Osteogenic Properties
Giorgio Iviglia, Elisa Torre, Clara Cassinelli, Marco Morra
Journal of Functional Biomaterials. 2021; 12(2): 31
[Pubmed]  [Google Scholar] [DOI]
11 Effect of Polyphenols Intake on Obesity-Induced Maternal Programming
Isabela Monique Fortunato, Tanila Wood dos Santos, Lucio Fbio Caldas Ferraz, Juliana Carvalho Santos, Marcelo Lima Ribeiro
Nutrients. 2021; 13(7): 2390
[Pubmed]  [Google Scholar] [DOI]
12 Polyphenols from grape pomace induce osteogenic differentiation in mesenchymal stem cells
Elisa Torre, Giorgio Iviglia, Clara Cassinelli, Marco Morra, Nazario Russo
International Journal of Molecular Medicine. 2020;
[Pubmed]  [Google Scholar] [DOI]
13 Antidiabetic Properties of Curcumin I: Evidence from In Vitro Studies
Danja J. Den Hartogh, Alessandra Gabriel, Evangelia Tsiani
Nutrients. 2020; 12(1): 118
[Pubmed]  [Google Scholar] [DOI]
14 CXCL12-CXCR4 Interplay Facilitates Palatal Osteogenesis in Mice
Nanne Verheijen, Christiaan M. Suttorp, Ren E. M. van Rheden, Raymond F. Regan, Maria P. A. C. Helmich, Anne Marie Kuijpers-Jagtman, Frank A. D. T. G. Wagener
Frontiers in Cell and Developmental Biology. 2020; 8
[Pubmed]  [Google Scholar] [DOI]
15 The Impact of Curcumin on Bone Osteogenic Promotion of MC3T3 Cells under High Glucose Conditions and Enhanced Bone Formation in Diabetic Mice
Jia He, Xiaofeng Yang, Fan Liu, Duo Li, Bowen Zheng, Adil Othman Abdullah, Yi Liu
Coatings. 2020; 10(3): 258
[Pubmed]  [Google Scholar] [DOI]
16 Phytochemicals impact on osteogenic differentiation of mesenchymal stem cells
Simin Sharifi, Farzin Arablouye Moghaddam, Atefeh Abedi, Solmaz Maleki Dizaj, Shahin Ahmadian, Elaheh Dalir Abdolahinia, Seyed Mahdi Hosseiniyan Khatibi, Mohammad Samiei
BioFactors. 2020; 46(6): 874
[Pubmed]  [Google Scholar] [DOI]
17 Role of Curcuminoids and Tricalcium Phosphate Ceramic in Rat Spinal Fusion
Daniel A. Ryan, Jiongjia Cheng, Koichi Masuda, John R. Cashman
Tissue Engineering Part C: Methods. 2020; 26(11): 577
[Pubmed]  [Google Scholar] [DOI]
18 Nanofibrous asymmetric collagen/curcumin membrane containing aspirin-loaded PLGA nanoparticles for guided bone regeneration
Mohammad Ali Ghavimi, Amirhossein Bani Shahabadi, Seyedhosein Jarolmasjed, Mohammad Yousef Memar, Solmaz Maleki Dizaj, Simin Sharifi
Scientific Reports. 2020; 10(1)
[Pubmed]  [Google Scholar] [DOI]
19 Plant extracts in prevention of obesity
Han-Ning Wang, Jin-Zhu Xiang, Zhi Qi, Min Du
Critical Reviews in Food Science and Nutrition. 2020; : 1
[Pubmed]  [Google Scholar] [DOI]
20 Controlled Delivery of Curcumin and Vitamin K2 from Hydroxyapatite-Coated Titanium Implant for Enhanced in Vitro Chemoprevention, Osteogenesis, and in Vivo Osseointegration
Naboneeta Sarkar, Susmita Bose
ACS Applied Materials & Interfaces. 2020; 12(12): 13644
[Pubmed]  [Google Scholar] [DOI]
21 Cytoprotective effects of antioxidant supplementation on mesenchymal stem cell therapy
Mohammad Panahi, Bahareh Rahimi, Golbarg Rahimi, Teck Yew Low, Neda Saraygord-Afshari, Effat Alizadeh
Journal of Cellular Physiology. 2020; 235(10): 6462
[Pubmed]  [Google Scholar] [DOI]
22 The potential function of miR -135b-mediated JAK2/STAT3 signaling pathway during osteoblast differentiation
Xiang-Tao Zhang, Min Sun, Li Zhang, Yi-Ke Dai, Fei Wang
The Kaohsiung Journal of Medical Sciences. 2020; 36(9): 673
[Pubmed]  [Google Scholar] [DOI]
23 ClC-3 chloride channels are involved in estradiol regulation of bone formation by MC3T3-E1 osteoblasts
Zhiqin Deng, Wencui Li, Jianying Xu, Meishen Yu, Duan Li, Qiuchan Tan, Daping Wang, Lixin Chen, Liwei Wang
Journal of Cellular Biochemistry. 2019; 120(5): 8366
[Pubmed]  [Google Scholar] [DOI]
24 Curcumin attenuates hypoxia/reoxygenation-induced cardiomyocyte injury by downregulating Notch signaling
Peng Zhu, Manli Yang, Hao He, Zhibin Kuang, Mu Liang, Anxiao Lin, Song Liang, Qiyun Wen, Zhiqin Cheng, Chaofeng Sun
Molecular Medicine Reports. 2019;
[Pubmed]  [Google Scholar] [DOI]
25 Comparison between curcumin and all-trans retinoic acid in the osteogenic differentiation of mouse bone marrow mesenchymal stem cells
Mahmoud Ahmed, Ahmed El-Sayed, Hao Chen, Ruifeng Zhao, Mohamed Yusuf, Qisheng Zuo, Yani Zhang, Bichun Li
Experimental and Therapeutic Medicine. 2019;
[Pubmed]  [Google Scholar] [DOI]
26 ANTIMICROBIAL THIN FILMS BASED ON AYURVEDIC PLANTS EXTRACTS EMBEDDED IN A BIOACTIVE GLASS MATRIX
L. Floroian,C. Ristoscu,G. Candiani,N. Pastori,M. Moscatelli,N. Mihailescu,I. Negut,M. Badea,M. Gilca,R. Chiesa,I.N. Mihailescu
Applied Surface Science. 2017;
[Pubmed]  [Google Scholar] [DOI]
27 Anti-adipogenic effects of sesamol on human mesenchymal stem cells
Min Kim,Yoo-Jung Lee,Seung-Cheol Jee,Inho Choi,Jung-Suk Sung
Biochemical and Biophysical Research Communications. 2016; 469(1): 49
[Pubmed]  [Google Scholar] [DOI]
28 Curculactones A and B induced the differentiation of C3H10T1/2 and MC3T3-E1 cells to osteoblasts
Hyo-Eun Son,Tae Hoon Kim,Won-Gu Jang
Bioorganic & Medicinal Chemistry Letters. 2016;
[Pubmed]  [Google Scholar] [DOI]
29 Curcumin protects human adipose-derived mesenchymal stem cells against oxidative stress-induced inhibition of osteogenesis
Nan Wang,Feng Wang,Youshui Gao,Peipei Yin,Chenhao Pan,Wei Liu,Zubin Zhou,Jiaxiang Wang
Journal of Pharmacological Sciences. 2016; 132(3): 192
[Pubmed]  [Google Scholar] [DOI]
30 Multiple Integrated Complementary Healing Approaches: Energetics & Light for bone
Michael G. Gray,Brett R. Lackey,Evelyn F. Patrick,Sandra L. Gray,Susan G. Hurley
Medical Hypotheses. 2016; 86: 18
[Pubmed]  [Google Scholar] [DOI]
31 Pretreatment of Adipose Derived Stem Cells with Curcumin Facilitates Myocardial Recovery via Antiapoptosis and Angiogenesis
Jianfeng Liu,Ping Zhu,Peng Song,Weiping Xiong,Haixu Chen,Wenhui Peng,Shuxia Wang,Shan Li,Zhiqing Fu,Yutang Wang,Haibin Wang
Stem Cells International. 2015; 2015: 1
[Pubmed]  [Google Scholar] [DOI]
32 Mesenchymal stromal cells loading curcumin-INVITE-micelles: A drug delivery system for neurodegenerative diseases
Giuseppe Tripodo,Theodora Chlapanidas,Sara Perteghella,Barbara Vigani,Delia Mandracchia,Adriana Trapani,Marta Galuzzi,Marta Cecilia Tosca,Barbara Antonioli,Paolo Gaetani,Mario Marazzi,Maria Luisa Torre
Colloids and Surfaces B: Biointerfaces. 2015; 125: 300
[Pubmed]  [Google Scholar] [DOI]
33 Attenuation of hind-limb suspension-induced bone loss by curcumin is associated with reduced oxidative stress and increased vitamin D receptor expression
M. Xin,Y. Yang,D. Zhang,J. Wang,S. Chen,D. Zhou
Osteoporosis International. 2015; 26(11): 2665
[Pubmed]  [Google Scholar] [DOI]
34 Ectopic Osteogenesis and Scaffold Biodegradation of Nano-Hydroxyapatite-Chitosan in a Rat Model
Yiqun He,Youhai Dong,Fuzhai Cui,Xujun Chen,Rongqiang Lin,Masaya Yamamoto
PLOS ONE. 2015; 10(8): e0135366
[Pubmed]  [Google Scholar] [DOI]
35 Novel antitumor mechanisms of curcumin: implication of altered tumor metabolism, reconstituted tumor microenvironment and augmented myelopoiesis
Naveen Kumar Vishvakarma
Phytochemistry Reviews. 2014;
[Pubmed]  [Google Scholar] [DOI]
36 Curcumin-functionalized silk materials for enhancing adipogenic differentiation of bone marrow-derived human mesenchymal stem cells
Chunmei Li,Tingting Luo,Zhaozhu Zheng,Amanda R. Murphy,Xiaoqin Wang,David L. Kaplan
Acta Biomaterialia. 2014;
[Pubmed]  [Google Scholar] [DOI]
37 ectopic osteogenesis and scaffold biodegradation of tissue engineering bone composed of chitosan and osteo-induced bone marrow mesenchymal stem cells in vivo
he, y.q. and dong, y.h. and chen, x.j. and lin, r.q.
chinese medical journal. 2014; 127(2): 322-328
[Pubmed]  [Google Scholar]
38 potential application of hydrolyzed fish collagen for inducing the multidirectional differentiation of rat bone marrow mesenchymal stem cells
liu, c. and sun, j.
biomacromolecules. 2014; 15(1): 436-443
[Pubmed]  [Google Scholar]
39 TNFa and IL-1 influence the differentiation and migration of murine MSCs independently of the NF-?B pathway
Catherine B Sullivan,Ryan M Porter,Chris H Evans,Thomas Ritter,Georgina Shaw,Frank Barry,Josephine Murphy
Stem Cell Research & Therapy. 2014; 5(4): 104
[Pubmed]  [Google Scholar] [DOI]
40 Decreased proliferation ability and differentiation potential of mesenchymal stem cells of osteoporosis rat
Qiang Wang,Bing Zhao,Chao Li,Jie-Sheng Rong,Shu-Qing Tao,Tian-Zun Tao
Asian Pacific Journal of Tropical Medicine. 2014; 7(5): 358
[Pubmed]  [Google Scholar] [DOI]
41 Potential Application of Hydrolyzed Fish Collagen for Inducing the Multidirectional Differentiation of Rat Bone Marrow Mesenchymal Stem Cells
Chao Liu,Jiao Sun
Biomacromolecules. 2014; 15(1): 436
[Pubmed]  [Google Scholar] [DOI]
42 Role of Heme Oxygenase-1 in Postnatal Differentiation of Stem Cells: A Possible Cross-Talk with MicroRNAs
Magdalena Kozakowska,Krzysztof Szade,Jozef Dulak,Alicja Jozkowicz
Antioxidants & Redox Signaling. 2014; 20(11): 1827
[Pubmed]  [Google Scholar] [DOI]
43 role of mesenchymal stem cells in bone regeneration and fracture repair: a review
wang, x. and wang, y. and gou, w. and lu, q. and peng, j. and lu, s.
international orthopaedics. 2013; 37(12): 2491-2498
[Pubmed]  [Google Scholar]
44 research progress in the construction of tissue engineered bone
he, y.-q. and dong, y.-h.
fudan university journal of medical sciences. 2013; 40(6): 738-743
[Pubmed]  [Google Scholar]
45 bone marrow mononuclear cells combined with nano-hydroxyapatite/collagen for repair of mandibular defects
wu, g.-x. and wang, j.-g. and du, x.-y.
chinese journal of tissue engineering research. 2013; 17(38): 6791-6796
[Pubmed]  [Google Scholar]
46 Bioerodible calcium sulfate/poly(β-amino ester) hydrogel composites
Orellana, B.R. and Thomas, M.V. and Dziubla, T.D. and Shah, N.M. and Hilt, J.Z. and Puleo, D.A.
Journal of the Mechanical Behavior of Biomedical Materials. 2013; 26: 43-53
[Pubmed]  [Google Scholar]
47 Role of mesenchymal stem cells in bone regeneration and fracture repair: a review
Xin Wang,Yu Wang,Wenlong Gou,Qiang Lu,Jiang Peng,Shibi Lu
International Orthopaedics. 2013; 37(12): 2491
[Pubmed]  [Google Scholar] [DOI]
48 Bioerodible calcium sulfate/poly(-amino ester) hydrogel composites
Bryan R. Orellana,Mark V. Thomas,Thomas D. Dziubla,Nihar M. Shah,J. Zach Hilt,David A. Puleo
Journal of the Mechanical Behavior of Biomedical Materials. 2013; 26: 43
[Pubmed]  [Google Scholar] [DOI]

 

Read this article