Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2022  |  Volume : 18  |  Issue : 78  |  Page : 286-295

Xylocarpus moluccensis fruit fraction rescues cardiac hypertrophy by improving angiogenesis and regulating NF-κB-mediated inflammation

1 Department of Pharmacology, CSIR-Central Drug Research Institute, Lucknow; Academy of Science and Innovation Research, New Delhi, India
2 Department of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
3 Academy of Science and Innovation Research, New Delhi; Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, India

Correspondence Address:
Kumaravelu Jagavelu
Principal Scientist, Pharmacology Division, CSIR-Central Drug Research Institute, CDRI/B.S.10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow-226031
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_79_21

Rights and Permissions

Background and Aim: The present study was undertaken to investigate the potential of ethyl acetate fraction obtained from the fruits of Xylocarpus moluccensis alcoholic extract (CDR-267-F018) against cardiac hypertrophy in rats. Experimental Procedure: Cardiac hypertrophy was achieved in Wistar rats through isoproterenol and treated either with propranolol or CDR-267-F018 for 14 days. Results and Conclusion: CDR-267-F018 treatment reduced isoproterenol induced cardiac hypertrophy as assessed by 2D-echocardiography and supported by reduction in ANP, BNP, β-MHC, NPP-A and increased expression of vascular endothelial growth factor receptor 1. CDR-267-F018 treatment tightly regulated inflammation by controlling the plasma proinflammatory cytokines tumor necrosis factor-α and IFN-γ, plasma EMP level and NF-κB, Akt and ERK. Further, CDR-267-F018 treatment reduced fibrosis by regulating Col18a1, FGF-21 and MMP2. In total, CDR-267-F018 protected rat heart against isoproterenol induced cardiac hypertrophy by acting on inflammation, fibrosis and by improving angiogenesis.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded25    
    Comments [Add]    

Recommend this journal