Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2021  |  Volume : 17  |  Issue : 74  |  Page : 360-366

Chemoprotective effect of crocetin against 1,2 dimethyl hydrazine induced colorectal cancer in albino wistar rats through antioxidant pathway


Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing City, Jiangsu, China

Correspondence Address:
Xin Guan
Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing City, Jiangsu 210009
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_311_20

Rights and Permissions

Background: Colorectal cancer is one of the chief causes of death and morbidity among all types of cancer worldwide, comprising both sexes. Crocetin (CT) is a major phytoconstituent of Crocus sativus L. which performed a number of pharmacological activities. The current study established CT's anticancer effect against 1,2-dimethylhydrazine (DMH)-persuaded colorectal cancer and discovered likely in vivo mechanisms. Methods: To tempt colorectal cancer in experimental albino Wistar rats, DMH was inserted subcutaneously. The rats were separated into five groups as follows: Group I – normal control rats, Group II – DMH-treated rats, Group III – DMH-treated rats receiving CT (5 mg/kg), Group IV – DMH-treated rats receiving CT (10 mg/kg), and Group V – DMH-treated rats receiving CT (20 mg/kg) for 10 weeks. At consistent intervals, the body weight and tumor weight were assessed. Biochemical, hepatic, antioxidant, Phase II antioxidant enzymes, inflammatory mediators, cytokine parameters, and apoptosis markers were projected at the end of the experimental study. Results: CT treatment suggestively augmented body weight (P < 0.001) and reduced tumor weight. CT administration also changed the level of antioxidant parameters – superoxide dismutase, glutathione peroxidase, and glutathione reductase; Phase I enzymes – cytochrome B5 and cytochrome P450; and Phase II enzymes – glutathione-S-transferase and UDP-glucuronyltransferase, respectively. Attained results also reveal that CT treatment abridged the level of cyclooxygenase-2, prostaglandin-2, and nitric oxide and diminish the expression of p38 mitogen-activated protein kinases. CT also augmented the expression of apoptosis markers – caspase-3 and caspase-9. Conclusion: Thus, the complete outcomes recommended the chemoprotective role of CT against DMH-induced colorectal cancer through the inhibition of inflammation and apoptosis pathways.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed146    
    Printed0    
    Emailed0    
    PDF Downloaded26    
    Comments [Add]    

Recommend this journal