Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2021  |  Volume : 17  |  Issue : 74  |  Page : 315-320

Protective effects of Elaeagnus angustifolia L. leaves against H2O2-induced oxidative damage in Rat Schwann Cells (RSC-96) through regulation of PI3K/Akt signaling pathway


1 School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei; College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
2 School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China
3 School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei

Correspondence Address:
Han-Lin Xu
Hubei University of Chinese Medicine, Wuhan, Hubei 430000
Hubei
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_275_20

Rights and Permissions

Background: As a special medicinal plant in Xinjiang province, Elaeagnus angustifolia L. plays an important role in windbreak and sand fixation. Its leaves are widely used in the field of traditional Chinese medicine treatment, mainly including diarrhea, dysentery, coronary heart disease and arrhythmia. Objective: In this study, our primary goal was to understand the mechanism of action of Elaeagnus angustifolia L. leaves (EALs) in protecting Rat Schwann cells (RSC-96) against H2O2-induced oxidative stress. Materials and Methods: The study material, EALs, was collected from Xinjiang Province in China. RSC-96 cells were stimulated by H2O2. Cell Counting Kit-8 assay was used in the detection of cell viability, and the cellular apoptosis and reactive oxygen species (ROS) levels were assessed by flow cytometry. The level of nerve growth factor (NGF) was assayed through enzyme-linked immunosorbent assay, and the expression of p-Akt BAX, PI3K, Bcl-2, and Akt was analyzed by Western blot. In addition, we detected the expression level of NGF. Results: According to our results, its levels were increased after stimulation with H2O2, but the levels of ROS and apoptosis were found to be reduced. Simultaneously, after induction with H2O2, the expression of Bcl-2, PI3K, p-Akt, and Akt was increased due to the presence of EALs extract, but the expression level of BAX was reduced. According to our results, EALs protects RSC-96 cells from hydrogen peroxide stress and its antiapoptotic and antioxidant effects are mainly mediated through PI3K/Akt signaling pathway. Conclusion: EALs extracts protected RSC-96 cells against H2O2-induced oxidative stress by exerting antioxidative and antiapoptotic effects through PI3K/Akt signaling pathways.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed164    
    Printed0    
    Emailed0    
    PDF Downloaded26    
    Comments [Add]    

Recommend this journal