Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2021  |  Volume : 17  |  Issue : 5  |  Page : 87-95

Camptothecin: An anticancer drug from Pestalotiopsis microspora Mh458929 – An endophytic fungus isolated from an ethnopharmacologically important medicinal plant Cordia dichotoma G. forst


Department of Biotechnology, Endophytic Fungal Metabolite Research Laboratory, Bannari Amman Institute of Technology, Erode, Tamil Nadu, India

Correspondence Address:
Kannan Kilavan Packiam
Endophytic Fungal Metabolite Research Laboratory Department of Biotechnology Bannari Amman Institute of Technology Sathyamangalam Erode District, TamilNadu
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_417_20

Rights and Permissions

Background: Endophytic fungi that live asymptomatically inside the plant tissues have novel bioactive metabolites exhibiting a variety of biological activities, especially against cancer. Cordia dichotoma G. Forst. play a significant role in traditional medicines and therapeutics. Leaves and bark have been used as anti-inflammatory and anticancer agents. Objectives: Isolation, screening, and in silico toxicity evaluation of camptothecin (CPT) from the endophytic fungus Pestalotiopsis microspora MH458929. Materials and Methods: Endophytic fungus was isolated from leaves of C. dichotoma collected from Sathyamangalam Tiger Reserve forest (STRF), Tamil Nadu. The wild strain was identified by 18S rDNA sequencing. Modified potato dextrose broth was used as a screening medium for the presence of CPT. CPT was analyzed by high-performance liquid chromatography and electrospray ionization–mass spectrometry (ESI-MS). Compounds identified by ESI-MS from fungal extract were further studied for their in silico toxicity study against Daphnia magna, Tetrahymena pyriformis, Pimephales promelas, and Rattus sp. Bioaccumulation factors, developmental toxicity, and mutagenicity were studied by the quantitative structure–activity relationship model – Toxicity Estimation Software Tool. Results: Endophytic fungus P. microspora produced a maximum yield of 0.691 mg/L of CPT. CPT derivatives were identified at m/z of 349.10, 363.08, and 389.41 through ESI-MS analysis. In silico toxicity study revealed that compounds were of Category D and hence considered nontoxic to higher organisms. However, compounds showed high toxicity for lower organisms, with toxicity order D. magna > T. pyriformis > P. promelas > rat. Conclusion: The present study is the first report to screen, isolate, and analyze the CPT's in silico toxicity and its derivatives from endophytic fungus P. microspora from STRF. Further in vitro and in vivo studies are recommended to utilize CPT and its derivatives in pharmaceuticals.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed116    
    Printed4    
    Emailed0    
    PDF Downloaded14    
    Comments [Add]    

Recommend this journal