Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2020  |  Volume : 16  |  Issue : 72  |  Page : 689-694

Aqueous leaf extract of Clinacanthus nutans inhibits growth and induces apoptosis via the intrinsic and extrinsic pathways in MDA-MB-231 human breast cancer cells


1 Department of Medical Education, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
2 Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
3 Department of Community and Family Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
4 Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah; Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia

Correspondence Address:
Siat Yee Fong
Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, UMS, 88400, Kota Kinabalu, Sabah
Malaysia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_121_20

Rights and Permissions

Background: Clinacanthus nutans possesses several reported biological activities against different human cancer cells. However, reports on the growth-inhibitory effect of C. nutans leaf extract on the aggressive triple-negative breast cancer cells and the mechanisms of induced-cell death in these cells are limited. Objectives: The study aimed to assess the anticancer efficacy and associated mechanisms of the crude aqueous extract of C. nutans leaves (cCN) in MDA-MB-231 triple-negative human breast cancer cells. Materials and Methods: The metabolic viability of the MDA-MB-231 cells following respective treatments with cCN was measured using an adenosine triphosphate luminescent assay. The mode of cell death in MDA-MB-231 cells induced by cCN was examined using a luminescence- and fluorescence-based assay and the mechanisms involved were evaluated by comparative analysis of gene expression by reverse transcription–quantitative polymerase chain reaction. Results: Dose- and time-dependent growth inhibition of MDA-MB-231 cells by cCN was observed (IC50: 191.20 μg/mL). cCN also induced apoptotic cell death in the treated cells via the intrinsic and extrinsic apoptosis pathways by affecting the mRNA expression levels of Bad, Bax, Bcl-2, Bcl-xL, and FasL. Conclusion: These results suggest that C. nutans can be used as a potential agent in the treatment and prevention of breast cancer.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1078    
    Printed18    
    Emailed0    
    PDF Downloaded359    
    Comments [Add]    

Recommend this journal