ORIGINAL ARTICLE |
|
Year : 2020 | Volume
: 16
| Issue : 71 | Page : 644-653 |
|
Methanolic extracts of Capparis ecuadorica iltis inhibit the inflammatory response in lipopolysaccharide-stimulated RAW 264.7 macrophage cells
Bo Ram Song1, Ji Eun Kim1, Jin Ju Park1, Mi Rim Lee1, Jun Young Choi1, Jin Kyung Noh2, Hyun Keun Song3, Dae Youn Hwang1
1 Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea 2 Department of Biological Science, University of Concepcion, Concepcion, Chile 3 Biomedical Science Institute, Changwon National University, Changwon, Korea
Correspondence Address:
Dae Youn Hwang Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463 Korea Hyun Keun Song Biomedical Science Institute, Changwon National University, 20 Changwondae-ro Uichang-gu, Changwon-si, Gyeongsangnam-do 51140 Korea
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/pm.pm_464_19
|
|
Background: Some species of the caper family are known to possess antibacterial, antioxidant, anti-inflammatory, immunomodulatory, and antiviral properties. However, to date, the therapeutic effects of Capparis ecuadorica Iltis (Capparis L.) have not been studied. Objectives: In this study, we investigated the anti-inflammatory activity of a methanolic extract of C. ecuadorica leaves (MCE) in macrophages. Materials and Methods: Anti-inflammatory responses and mechanisms were assessed in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells after pretreatment with MCE. Results: In the MCE + LPS-treated group, the relative mRNA levels of pro-inflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-1β, IL-6) were downregulated and protein levels of IL-6 were also decreased as compared to the vehicle + LPS-treated group. Furthermore, the MCE + LPS-treated group showed reduced levels of reactive oxygen species (ROS) production as compared to the vehicle + LPS-treated group; detection of nitrite concentration revealed nitric oxide (NO) to be the reduced ROS. The expression levels of inducible nitric oxide synthase (iNOS)/cyclooxygenase-2 (COX-2) mRNA and the level of phosphorylation of IκBα were decreased in the MCE + LPS-treated group. In addition, MCE + LPS-treated group showed reduced levels of phosphorylation of MAP kinase in comparison to the vehicle + LPS-treated group. Interestingly, MCE also inhibited other inflammatory mechanisms, namely, endoplasmic reticulum (ER) stress and autophagy. Conclusion: These results indicate that MCE inhibits inflammatory responses through the inhibition of inflammatory cytokines and NO production, iNOS/COX-2 expression and nuclear factor-kappa B (NF-κB) activation, MAPK inhibition, as well as regulation of ER stress and autophagy in LPS-stimulated RAW 264.7 cells.
|
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|