Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2020  |  Volume : 16  |  Issue : 71  |  Page : 644-653

Methanolic extracts of Capparis ecuadorica iltis inhibit the inflammatory response in lipopolysaccharide-stimulated RAW 264.7 macrophage cells

1 Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
2 Department of Biological Science, University of Concepcion, Concepcion, Chile
3 Biomedical Science Institute, Changwon National University, Changwon, Korea

Correspondence Address:
Dae Youn Hwang
Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463
Hyun Keun Song
Biomedical Science Institute, Changwon National University, 20 Changwondae-ro Uichang-gu, Changwon-si, Gyeongsangnam-do 51140
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_464_19

Rights and Permissions

Background: Some species of the caper family are known to possess antibacterial, antioxidant, anti-inflammatory, immunomodulatory, and antiviral properties. However, to date, the therapeutic effects of Capparis ecuadorica Iltis (Capparis L.) have not been studied. Objectives: In this study, we investigated the anti-inflammatory activity of a methanolic extract of C. ecuadorica leaves (MCE) in macrophages. Materials and Methods: Anti-inflammatory responses and mechanisms were assessed in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells after pretreatment with MCE. Results: In the MCE + LPS-treated group, the relative mRNA levels of pro-inflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-1β, IL-6) were downregulated and protein levels of IL-6 were also decreased as compared to the vehicle + LPS-treated group. Furthermore, the MCE + LPS-treated group showed reduced levels of reactive oxygen species (ROS) production as compared to the vehicle + LPS-treated group; detection of nitrite concentration revealed nitric oxide (NO) to be the reduced ROS. The expression levels of inducible nitric oxide synthase (iNOS)/cyclooxygenase-2 (COX-2) mRNA and the level of phosphorylation of IκBα were decreased in the MCE + LPS-treated group. In addition, MCE + LPS-treated group showed reduced levels of phosphorylation of MAP kinase in comparison to the vehicle + LPS-treated group. Interestingly, MCE also inhibited other inflammatory mechanisms, namely, endoplasmic reticulum (ER) stress and autophagy. Conclusion: These results indicate that MCE inhibits inflammatory responses through the inhibition of inflammatory cytokines and NO production, iNOS/COX-2 expression and nuclear factor-kappa B (NF-κB) activation, MAPK inhibition, as well as regulation of ER stress and autophagy in LPS-stimulated RAW 264.7 cells.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded188    
    Comments [Add]    
    Cited by others 1    

Recommend this journal