Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2020  |  Volume : 16  |  Issue : 71  |  Page : 585-591

Protective effect of caffeic acid phenethyl ester against acute and subchronic mice cardiotoxicity induced by cyclophosphamide alone or plus naproxen


1 Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
2 Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia; Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
3 Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia; Departmen of R & D, Saudi Food and Drug Authority, Riyadh, Saudi Arabia
4 Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia

Correspondence Address:
Promise Madu Emeka
Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982
Saudi Arabia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_159_20

Rights and Permissions

Background: The limiting factor in the use of cyclophosphamide (CYP) in cancer chemotherapy is its induced oxidative cardiotoxicity. Objectives: This study aims to investigate the possible protective effect of caffeic acid phenethyl ester (CAPE) in the co-administration of CYP and naproxen (NAP) with acute and subchronic treatments in mice. Materials and Methods: Male BALB/c mice were divided into two phases of acute (24 h) and subchronic (30 days) treatments, of which seven groups each were used. Two groups from both acute and subchronic treatments represented untreated controls and CAPE groups, while others were CYP, NAP, CYP+NAP, CYP+CAPE and CYP+NAP+CAPE groups for both treatments. The activity of the cardiac antioxidative enzyme catalase was measured. The levels of cardiac reduced glutathione (GSH), protein carbonyl and malondialdehyde (MDA) were also assayed. In addition, histopathology of the heart tissues and immunohistochemistry of endothelial nitric oxide synthase (eNOS) expression were evaluated. Results: Our results showed that catalase and GSH were significantly decreased in all subchronic treatments. Furthermore, protein carbonyl and MDA were increased in both acute and subchronic treatments. Histopathological examination showed hypertrophic cells induced by CYP, NAP, and in combination. Moreover, CYP, NAP and in combination, significantly reduced eNOS levels. However, CAPE significantly prevented changes induced by CYP and NAP in both treatment groups. Conclusion: These observations highlight the protective potentials of CAPE in CYP-NAP-induced cardiotoxicity.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed121    
    Printed0    
    Emailed0    
    PDF Downloaded18    
    Comments [Add]    

Recommend this journal