Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2020  |  Volume : 16  |  Issue : 71  |  Page : 531-537

Chlorogenic acid in Viscum album callus is a potential anticancer agent against C6 glioma cells

1 Department of Gyeongsangbuk-do Arboretum, Sumogwon-ro 647, Pohang, Gyeongbuk (37502); Department of Bio-Science, College of Natural Science, Dongguk University, Dongdae-ro, Gyeongju, Gyeongbuk (38066), Republic of Korea
2 Research and Development Center, UMUST R&D Corporation, Neungdong-ro, Gwangjin-gu, Seoul (05029), Republic of Korea
3 Department of Nuclear Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul (07804), Republic of Korea
4 National Marine Biodiversity Institute of Korea, Jangsan-ro, Seocheon, Chungcheongnam-do (33662), Republic of Korea
5 Korea Basic Science Institute, Seoul, (02841), Republic of Korea
6 Department of Bio-Science, College of Natural Science, Dongguk University, Dongdae-ro, Gyeongju, Gyeongbuk (38066), Republic of Korea
7 Physical Activity & Performance Institute; Department of Sports Medicine and Science in Graduated School, Konkuk University, Neungdong-ro, Gwangjin-gu, Seoul (05029), Republic of Korea

Correspondence Address:
Jisu Kim
Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul 05029
Republic of Korea
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_479_19

Rights and Permissions

Background: Chlorogenic acid (CA), a polyphenolic component of fruits, vegetables, coffee, wine, and olive oil, has beneficial effects on human heath, including antioxidant and anticancer effects. However, its precise effects on glioma have not been examined. Objective: Our study aimed to explore the anticancer effects of CA obtained from Viscum album callus on C6 glioma cell migration and proliferation. Materials and Methods: Anticancer potency was analyzed by the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt assay to assess the ability to inhibit cell growth and proliferation. Cell mobility was investigated based on the Boyden chamber and the scratch wound healing assay. Factors involved in cell cycle progression were evaluated by mRNA and protein expression. Cell death was determined by staining with specific dyes and fluorescence microscopy. Results: CA significantly reduced C6 glioma cell proliferation and migration. Furthermore, it induced reactive oxygen species generation and apoptotic cell death. Treatment with CA also suppressed extracellular signal-regulated kinase ½ (ERK½) phosphorylation and the gene expression of cyclins E and A. Conclusion: Our results show that CA may regulate glioma cell migration and proliferation via modulation of ERK½ phosphorylation and cell cycle regulation. Thus, it might be a potent anticancer agent in preventing progression of glioma.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded182    
    Comments [Add]    
    Cited by others 2    

Recommend this journal