ORIGINAL ARTICLE |
|
Year : 2020 | Volume
: 16
| Issue : 67 | Page : 161-168 |
|
Ethanol extract of Magnolia sieboldii buds ameliorated esophageal tissue injury induced by gastric acid reflux in rats via regulating the nuclear factor-κB signaling pathway
Li Nan1, Hyeon-Hwa Nam1, Jin-Cheon Park2, Byung-Kil Choo1
1 Department of Crop Science and Biotechnology, Chonbuk National University, Jeonju, Republic of Korea 2 Bioenergy Crop Research Institute, Rural Development Administration , National Institute of Crop Science, Bioenergy Crop Research Institute, Jeollanam-do, Republic of Korea
Correspondence Address:
Byung-Kil Choo Department of Crop Science and Biotechnology, Chonbuk National University, Jeonju 54896 Republic of Korea
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/pm.pm_57_19
|
|
Background: Reflux esophagitis (RE) is one of the gastroesophageal reflux diseases that seriously affect the daily life of patients. Magnolia sieboldii K. Koch has been used as a traditional Chinese herbal medicine for stomach pain relief and deworming and has various physiological activities. Objective: The objective is to investigate the anti-inflammatory and protective effects of the ethanol extract of M. sieboldii buds (MsE) on RE. Materials and Methods: The different concentrations of MsE were used to determine the anti-inflammatory effects on lipopolysaccharide (LPS)-induced cells. In addition, the treatment of MsE on experimental RE rats were used for determining the protective effects of MsE on RE. Results: M. sieboldii treatment effectively inhibited LPS-induced nitric oxide (NO) production, protein expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor-alpha (TNF-α) by regulating the activation of nuclear factor-κB (NF-κB) and C-Jun N-terminal kinase/mitogen-activated protein kinase in cells. Furthermore, M. sieboldii treatment significantly ameliorated esophageal tissue damage caused by gastric acid reflux, as well as inhibited the expression of COX-2, TNF-α, and interleukin-1 beta in esophageal tissues through inhibition the activation of NF-κB. Conclusion: We suggested that the ethanol extract of M. sieboldii could consider being an alternative medicine material for treating RE.
|
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|