Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2020  |  Volume : 16  |  Issue : 5  |  Page : 474-485

Herniarin, a natural coumarin loaded novel targeted plasmonic silver nanoparticles for light activated chemo-photothermal therapy in preclinical model of breast cancer


1 Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
2 Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand; Department of Pharmacy, School of Health Sciences, Central University of South Bihar (CUSB), Government of India, Gaya, India
3 Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, Gaya, India

Correspondence Address:
Shakti P Pattanayak
Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand; Department of Pharmacy, School of Health Sciences, Central University of South Bihar (CUSB), Govt. of India, Gaya-824209,
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_223_20

Rights and Permissions

Background: The conventional chemotherapeutic approach for breast cancer involves use of free drug substances that succumb into considerable systemic toxicity. For the past few decades biologically active phytochemicals like coumarins have gained much interest against breast cancer. However, there are lacunas in direct use of these potent biomolecules that impede their pharmacological functions. On the other hand, recent years have also witnessed great advancements in stimuli actuated nanotherapeutics as combined treatment strategies in critical breast cancer cases. Objectives: In this study we formulated novel pentagonal plasmonic silver nanoparticles as folate receptor targeted light responsive nano-delivery platform for a potent coumarin derivative, Herniarin to improve its therapeutic proficiency. Materials and Methods: Primarily, we synthesized plasmonic silver based nanoscopic carrier for herniarin to facilitate its tumor targeted delivery via folate receptors. These formulated nanoparticles (Herniarin quenched, folic acid furnished, HER-FA-AgNPs) were subjected to series of physicochemical tests, followed by detailed in-vitro and in-vivo testing in breast cancer cell lines and DMBA induced breast cancer model in rats, respectively. Results: The pentagonal nanoparticles observed in transmission electron microscopy demonstrated strong plasmonic tunability in the NIR region while its key feature of transforming light into heat energy when exposed to laser (800 nm) allowed photothermal therapy to supplement the chemotherapeutic potential of Herniarin as illustrated in various in-vitro studies. The in-vivo studies including detailed cellular investigations of breast tissues through Field Emission Scanning Electron Microscope and histopathology reflected the improved outcome of combined therapeutic modalities (hyperthermia + chemotherapy) achieved by HER-FA-AgNPs. Conclusion: Thus, these novel nanoparticles may serve as an efficient as well as safe drug-disposing vehicle for combined and strategic therapy of breast cancer.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed326    
    Printed0    
    Emailed0    
    PDF Downloaded59    
    Comments [Add]    

Recommend this journal