Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2019  |  Volume : 15  |  Issue : 65  |  Page : 659-670

Metabolic profiling of Solanum villosum Mill subsp. miniatum (bernh. ex willd.): Hepatoprotective and antifibrotic activity in a rat model of liver fibrosis

1 Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
2 Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, Germany
3 Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia

Correspondence Address:
Ashraf B Abdel-Naim
Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah
Saudi Arabia
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_547_18

Rights and Permissions

Aim/Background: To assess the liver antifibrotic action of ethanolic extract of aerial parts of Solanum villosum Mill subsp. miniatum (Bernh. ex Willd.) (SVE) and correlate this activity with its high performance liquid chromatography-quadrupole time of flight (HPLC-qTOF) Electrospray Ionisation Mass Spectrometry (ESIMS) phytochemical profile. Materials and Methods: The median lethal dose of SVE was determined, and a rat model of carbon tetrachloride (CCl4)-induced liver fibrosis was used to evaluate its antifibrotic activity. Markers for hepatotoxicity, fibrosis, and oxidative stress were assessed, and histopathological features of liver tissues were examined. Metabolite profiling of SVE was achieved via HPLC-qTOF-ESIMS coupled with Photodiode array (PDA). Liver fibrosis was induced in rats by oral administration of CCl4for 6 weeks. Silymarin (positive control) and SVE (100 and 250 mg/kg) were orally administered daily for 6 weeks. Results: Compared to CCl4-intoxicated group, administration of SVE obviously ameliorated fibrosis of the hepatic capsule associated with aggregation of multiple focal fat cells formation. Both silymarin and SVE ameliorated the rise in serum markers of hepatotoxicity (alanine transaminase, aspartate transaminase, and alkaline phosphatase), markedly attenuated CCl4-induced oxidative stress. The antifibrotic activity of SVE was evidenced by inhibiting the rise in hepatic hydroxyproline content and accumulation of collagen. This was confirmed by the ability of SVE to inhibit alterations in expression of the fibrosis-related genes Collagen Iα, matrixmetalloproteinase-2 (MMP-2), tissue inhibitor matrix metalloproteinase-2, and transforming growth factor beta 1. HPLC-qTOF-ESIMS analysis of SVE revealed the presence of 47 metabolites, among which 33 were tentatively identified. Conclusion: SVE exhibited hepatoprotective and antifibrotic activities in rats by enhancing the antioxidant capacity and regulating expression of fibrogenic mediators.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded213    
    Comments [Add]    
    Cited by others 1    

Recommend this journal