Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2019  |  Volume : 15  |  Issue : 65  |  Page : 652-658

Alisma orientalis (Sam.) juzep polysaccharide-regulated glucose-lipid metabolism in experimental rats and cell model of diabetes mellitus with regulation of miR-126

Department of Clinical Laboratory, The First People's Hospital of Wuhu, Wuhu, Anhui, China

Correspondence Address:
Fan Cui
Department of Clinical Laboratory, The First People's Hospital of Wuhu, Wuhu, Anhui
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_441_18

Rights and Permissions

Background: Alismatis rhizome (AR) is a popular traditional Chinese medicine, used for hyperlipidemia and diabetes in China for centuries; Alisma polysaccharides (AP) are the bioactive components in AR. This study investigates if glucose–lipid metabolism can be regulated by AP via miR-126 in vivo and in vitro. Materials and Methods: The diabetes group (diabetes mellitus) was injected intraperitoneally with streptozotocin (35 mg/kg) for 7 days. Diabetic mice treated with AP at an oral dose of either 400 mg/kg (high), 200 mg/kg (middle), or 100 mg/kg (low); and mice treated with pioglitazone (15 mg/kg) each day. The hypoglycemic and hypolipidemic effects of AP were demonstrated by measuring fasting blood glucose (FBG) levels, fasting insulin level, total cholesterol, triglyceride, low-density lipoprotein and high-density lipoprotein, observing insulin-sensitizing effects, and testing oral glucose tolerance. In addition, the expression of both miR-126 and related glucose–lipid genes in the primary hepatocytes was examined in diabetic mice. Results: The FBG, long-term blood glucose, and the ability to resolve blood glucose by insulin in AP groups were significantly better than that in model group. AP could reverse the expression level of miR-126 and genes. The addition of AP could reduce the effect of miR-126, reversing the expression of glucose–lipid genes in HepG2 cell. Conclusion: The results demonstrate that the expression of miR-126 can be directly decreased by AP in diabetic mice, especially in HepG2 cell, and AP also can ameliorate the glucose–lipid metabolism.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded209    
    Comments [Add]    
    Cited by others 1    

Recommend this journal