Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2019  |  Volume : 15  |  Issue : 65  |  Page : 631-637

Cytotoxic activity of Rauvolfia tetraphylla L. on human cervical cancer (HeLa) cells

1 Laboratorio De Farmacología De Plantas Medicinales Mexicanas, Escuela Superior De Medicina, Instituto Politécnico Nacional,Ciudad De México, México
2 Laboratorio De Medicina De Conservación, Escuela Superior De Medicina, Instituto Politécnico Nacional, Ciudad De México, México
3 Instituto Politecnico Nacional-CNMN, Ciudad De Mexico, Mexico

Correspondence Address:
María Elena Sánchez-Mendoza
Escuela Superior De Medicina, Instituto Politécnico Nacional, Plan De San Luis Y Díaz Mirón, Colonia Santo Tomás, Delegación Miguel Hidalgo, Ciudad De México 11340
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_106_19

Rights and Permissions

Background: Although the plant Rauvolfia tetraphylla is used for the treatment of cancer in the traditional medicine of some regions of Mexico, its cytotoxic activity has not been subjected to rigorous investigation. Objective: The aim of the present study was to carry out a bioassay-guided fractionation of Rauvolfia tetraphylla leaves to evaluate the activity on cervical cancer (HeLa) and normal cells. Materials and Methods: Of hexane, dichloromethane and methanol extracts, hexane extract showed the most cytotoxic activity. Its most active fraction was characterized by mass spectrometry and assessed for cytotoxicity (by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assays and trypan blue staining) on cervical cancer (HeLa) cells, normal human (HaCat) cells, and other cancer cell lines: A549, Caco-2, MDA-MB-231, and MCF7. Cisplatin served as the reference drug. Apoptosis was explored as a possible mechanism of action by examining DNA fragmentation and phosphatidylserine translocation. Results: The active fraction, composed of at least 5 constituents, was cytotoxic to all cancer cell lines, especially HeLa cells (IC30= 20.10 ± 1.1 μg/mL). To a lesser extent, it was also cytotoxic to normal cells (HaCat; IC30= 40.04 ± 12.78 μg/mL), indicating certain selectivity. Its mechanism of action in HeLa cells involved apoptosis. Conclusion: The active fraction of the hexane extract of R. tetraphylla was cytotoxic to cancer cells and did not produce excessive damage to normal cells. Apoptosis was apparently part of the mechanism of cytotoxicity.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded262    
    Comments [Add]    
    Cited by others 3    

Recommend this journal