Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2019  |  Volume : 15  |  Issue : 64  |  Page : 298-306

Pila globosa snail extract inhibits osteoclast differentiation via downregulation of nuclear factor κB and nuclear factor of activated T-Cells c1 signaling pathways

1 Department of Zoology, Unit of Aquatic Biotechnology and Live Feed Culture, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
2 Department of Biochemistry, VRR Institute of Biomedical Science (Affiliated to University of Madras), Chennai, Tamil Nadu, India

Correspondence Address:
Ramasubramanian Venkatachalam
Department of Zoology, Division of Aquatic Biotechnology and Live Feed Culture, Bharathiar University, Coimbatore - 641 046, Tamil Nadu
Shila Samuel
Department of Biochemistry, VRR Institute of Biomedical Science (Affiliated to University of Madras), Chennai - 600 056, Tamil Nadu
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_39_19

Rights and Permissions

Background: Osteoporosis, a skeletal disease, that leads to increased fracture risk, features an enhanced osteoclast formation and bone resorption. Identification of agents that modulate aberrant osteoclast formation and function is important for the treatment of osteoporosis. Objective: The current study describes for the first time that Pila globosa snail extract inhibits osteoclastogenesis in vitro and thus suppresses bone loss in ovariectomy-induced rat model. Materials and Methods: Ovariectomized (Ovx) rats were treated with P. globosa snail extract and compared with sham, Ovx, and Ovx treated with zoledronate groups. Serum levels of C-terminal crosslinking telopeptides of type-1 collagen (CTX-1), TRAP5b, and antioxidant markers were determined. mRNA expressions of cathepsin K (CTSK), TRAP, calcitonin receptor (CTR), and matrix metalloproteinase 9 (MMP-9) were also assessed. Immunoblots of nuclear factor of activated T-cells c1 (NFATc1), c-Fos, TNF receptor-associated factor 6, c-Jun, and nuclear factor κB (NFκB) proteins were analyzed. Results and Discussion: P. globosa snail extract induced a decrease in the activation of NFκB, c-Fos, and NFATc1, which resulted in the downregulation of target genes, CTSK, TRAP, CTR, and MMP-9. P. globosa snail extract decreased the serum markers of bone resorption, C-terminal telopeptides of type-1 collagen (CTX-1), and tartrate-resistant acid phosphatase 5b (TRAP5b), reflecting the reduced number and activity of osteoclasts. Moreover, the results also suggested that the protective effect of P. globosa snail extract against osteoporosis is associated with the reduction of oxidative stress as evidenced by decreased malondialdehyde and increased serum antioxidant markers, superoxide dismutase, catalase, and glutathione. Conclusion: The upshot of the study suggests that the P. globosa snail extract represents a potential treatment option against osteolytic bone disease.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded171    
    Comments [Add]    
    Cited by others 2    

Recommend this journal