Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2019  |  Volume : 15  |  Issue : 64  |  Page : 267-273

Impact of microwaves on the extraction yield of phenolics, flavonoids, and triterpenoids from centella leaves: An approach toward digitized robust botanical extraction

1 Department of Rural Technology, Guru Ghasidas Central University, Bilaspur, Chhattisgarh, India
2 Department of Pharmacognosy, Institute of Pharmacy, Guru Ghasidas Central University, Bilaspur, Chhattisgarh, India

Correspondence Address:
Vivekananda Mandal
Institute of Pharmacy, Guru Ghasidas Central University, Bilaspur - 495 009, Chhattisgarh
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_99_19

Rights and Permissions

Introduction: A novel green approach of microwave-based extraction of botanicals for improved yield of bioactives has been investigated. In this regard, leaves of Centella asiatica which has a rich history of ethomedicinal use were chosen. Objective: The aim of this study is to develop a robust optimized microwave-based extraction protocol for improved yield of phenolics, flavonoids, and triterpenoids principles. Materials and Methods: Microwave power and extraction time were critically optimized along with the effect of moisture content through sample pretreatment. Effect of optimized operating conditions on the biological integrity of the extract and on the extraction of other nutraceutical principles was also evaluated. Results were compared to traditional extraction methods. Results: The final optimum extraction conditions were 50% microwave power, 6-min irradiation time, and 54% moisture content for maximum yield of phenolics and triterpenoids, whereas for flavonoids, optimum microwave power was 40% with other conditions remaining same. The proposed method was found to be three-fold better than 36 h of Soxhlet extraction and produced 200 times lesser carbon load than Soxhlet. Improved yield of other nutraceutical principles with better anti-oxidant activity was recorded for the proposed method. Conclusion: Switching to such greener technology is now the need of the hour. This research is a sincere effort to showcase the potential of green chemistry in the herbal drug industry.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded333    
    Comments [Add]    
    Cited by others 4    

Recommend this journal