Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2019  |  Volume : 15  |  Issue : 62  |  Page : 111-117

Bioavailable curcumin alleviates lipopolysaccharide-induced neuroinflammation and improves cognition in experimental animals

1 Department of Pharmacology, School of Pharmacy, Mahatma Gandhi University, Kottayam, Kerala, India
2 R and D Centre, Akay Flavours and Aromatics Pvt. Ltd., Ernakulam, Kerala, India

Correspondence Address:
Sibi Ittiyavirah
Department of Pharmacology, School of Pharmacy, Mahatma Gandhi University, Kottayam - 686 631, Kerala
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_307_18

Rights and Permissions

Background: Healthy neurons and neurotransmitter levels are necessary for the survival of an organism. Considering the fact that the global incidence of neurological disorders are increasing at an alarming rate; there is a global move toward the development of cost-effective natural neuroprotective agents. Objective: In the present contribution, we hypothesized that the formulations of curcumin capable of delivering curcuminoids in the brain would provide enhanced cognitive effects. In this regard, we investigated the relative efficacy of unformulated curcumin (UC) in comparison with “curcumin-galactomannan complex (CGM), an enhanced bioavailable formulation of curcumin that has been reported to possess improved blood-brain-barrier permeability and tissue distribution (Trademarked as “CurQfen®”). Materials and Methods: Lipopolysaccharide (LPS)-induced neuro-inflammatory animal model was employed for the study. Wistar rats of 180–200 g body weight (aged 3–4 weeks) were grouped as Group I: Vehicle control, Group II: LPS treated (250 μg/kg b.wt.), Group III: CGM (200 mg/kg b.wt.) + LPS (i.p.250 μg/kg b.wt.), and Group IV: UC (200 mg/kg b.wt.) + LPS (i.p.250 μg/kg b.wt.) and treated for 28 days. Results: Behavioral studies (elevated plus maze, radial arm maze, and Y-maze), neurotransmitter levels, and histopathology revealed a statistically significant (P ≤ 0.001) cognitive improvement and reduced inflammation among CGM treated rats as compared to UC treated groups. Conclusion: CGM possesses significant enhanced cognitive effects than UC (IEAC No: DPS/12/2015).

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded182    
    Comments [Add]    

Recommend this journal