Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2019  |  Volume : 15  |  Issue : 61  |  Page : 322-326

Antinociceptive activity of the peptide fraction from the venom of social wasp Pseudopolybia vespiceps testacea

Department of Physiological Sciences, Neuropharmacology Laboratory, Institute of Biological Sciences, University of Brasília, Brasília, Brazil

Correspondence Address:
Marcia Renata Mortari
Campus Universitário Darcy Ribeiro, Department of Physiological Sciences, Neuropharmacology Laboratory, Institute of Biological Sciences, University of Brasília, Campus Universitário Darcy Ribeiro, 70910-900, Brasília, Distrito Federal
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_238_18

Rights and Permissions

Background: Chronic pain is an urgent medical problem worldwide, resulting in long-term sick leave, low quality of life, and high socioeconomic costs. Despite the physiological, emotional, and financial burden of chronic pain, there is still a lack of efficient treatments. In this context, toxins isolated from arthropods are considered powerful tools because they have targets that are compatible with the impulse transmission of pain and can provide an interesting alternative in the development of more efficient analgesic treatments. Wasps are arthropods with potent venom that contains a complex mixture of compounds, including biogenic amines, proteins, and peptides. For decades, chemical identification and biological characterization of wasp venom peptides have accumulated considerable attention from researchers. Objective: The objective of this work was to evaluate the antinociceptive activity of the peptide fraction (Fpep) from low-molecular-weight compounds (LMWCs) from the venom of the Brazilian social wasp Pseudopolybia vespiceps testacea. Materials and Methods: P. vespiceps females were collected, and after euthanasia by freezing (−20°C), a total of 148 venom sacs were used to acquire only compounds with LMWCs. The antinociceptive effect of the Fpep from LMWCs was observed by two thermal tests: tail flick and hot plate measured in male Swiss mice. Results: Fpep showed dose-dependent antinociceptive activity in mice submitted to intracerebroventricular injection in two different models. Conclusion: These results revealed the significant potential impact of the LMWCs of the venom of Pseudopolybia vespiceps testacea, including neuroactive peptides that can be used as pharmacological resources for antinociceptive drug research. Abbreviations used: ACN/H2O: Acetonitrile/deionized water; CEUA: Committee for Ethics in Animal Use; CNS: Central nervous system; Fpep: Peptide fraction; i.c.v: Intracerebroventricular; LMWCs: Low-molecular-weight compounds; P. vespiceps: Pseudopolybia vespiceps testacea.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded159    
    Comments [Add]    

Recommend this journal