ORIGINAL ARTICLE |
|
Year : 2019 | Volume
: 15
| Issue : 61 | Page : 259-263 |
|
Gracilaria foliifera (Forssk.) Børgesen ethanolic extract triggers apoptosis via activation of p53 expression in HepG2 cells
Sasikumar Shebi1, Devaraj Ezhilarasan1, John Thomas2, Natarajan Chandrasekaran2, Amitava Mukherjee2
1 Department of Pharmacology, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India 2 Centre for Nanobiotechnology, Vellore Institute of Technology (VIT) University, Vellore, Tamil Nadu, India
Correspondence Address:
Devaraj Ezhilarasan Department of Pharmacology, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, No. 162, PH Road, Chennai - 600 077, Tamil Nadu India
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/pm.pm_379_18
|
|
Background: Hepatocellular carcinoma is one of the most common types of malignancy and causes significant morbidity and mortality worldwide. Gracilaria foliifera (Forssk.) Børgesen, a brown marine alga, is shown to have growth inhibitory potential against various cancer cell lines other than human hepatoma HepG2 cells. Objective: To investigate the cytotoxic potentials of G. foliifera in HepG2 cells. Materials and Methods: HepG2 cells were fed with culture medium supplemented with different concentrations of ethanolic extract of G. foliifera (20, 40, and 80 μg/mL). After 24 h of treatment, the cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Induction of early apoptosis was investigated by annexin V-fluorescein isothiocyanate immunofluorescence. Induction of late apoptosis and necroptosis was investigated by annexin V and propidium iodide (PI) staining. Nuclear chromatin condensation was evaluated by Hoechst staining. p53 protein expression was analyzed using Western blotting. Results: G. foliifera treatment in HepG2 cells caused a significant cytotoxic effect. Phosphatidylserine translocation confirms the induction of early apoptosis. Analysis of late apoptosis using annexin V/PI staining showed that the percentage of apoptotic cells was increased in a concentration-dependent manner. Hoechst nuclear staining further confirms the nuclear chromatin condensation. G. foliifera treatment also induced the tumor suppressor p53 protein expressions. Conclusion: The present study demonstrated that G. foliifera induced apoptosis in HepG2 cells through activation of p53.
Abbreviations used: HCC: Hepatocellular carcinoma; DMEM: Dulbecco's minimum essential medium; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NCCS: The National Center for Cell Science; FBS: Fetal bovine serum; PI: Propidium iodide; PS: Phosphatidylserine.
|
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|