Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2019  |  Volume : 15  |  Issue : 61  |  Page : 232-237

Biological evaluation and molecular docking study of metabolites from Salvadora Persica L. Growing in Egypt

1 Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt; Department of Natural Products, School of Pharmacy, Almaarefa Colleges for Science and Technology, Riyadh, Saudia Arabia
2 Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
3 Department of Organic Chemistry, College of Pharmacy, Misr University for Science and Technology, Al-Motamayez District, Damnhour, Egypt
4 Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Damnhour University, Damnhour, Egypt
5 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudia Arabia
6 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta 34517, Egypt

Correspondence Address:
Ahmed M Metwaly
Department of Pharmacognosy, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_361_18

Rights and Permissions

Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a resistant staph bacterium to several antibiotics causing several lives-threating diseases such as pneumonia and sepsis. Meswak, Salvadora persica, exhibited promising antimicrobial properties before. Objective: Exploring the anti-MRSA activity of S. persica L. metabolites and its mechanism of action on a molecular level. Materials and Methods: Structure elucidation of the isolated metabolites was carried out by spectroscopic data (one-dimensional and two-dimensional nuclear magnetic resonance). The biological activities of the isolated metabolites against MRSA were evaluated and the molecular mode of action against the dehydrosqualene synthase enzyme have been done. Results: Four compounds have been isolated and identifies to be; apigenin (1), luteolin (2), astragalin (3), and kaempferol-3-O-rhamnoside (4). Compounds 1–4 showed good anti-MRSA activities with IC50 values of 10.3, 11.5, 3.5, and 4.5 μg/mL, respectively. In consistent, astragalin and kaempferol-3 rhamnoside showed close high docking scores. Herein, we are reporting the molecular determinates of activity of these new scaffolds as anti-MRSA, which would be of great importance to developing new anti-MRSA candidates. Abbreviations Used: 1D: One-dimensional; 2D: Two-dimensional; CC: Column chromatography; COSY: Correlations spectroscopy; DMSO: Dimethyl sulfoxide; HMBC: Heteronuclear multiple-bond correlation experiment; HRESIMS: High-resolution electrospray ionization mass spectrometry; HSQC: Heteronuclear single-quantum correlation; IR: Infrared; MRSA: Methicillin-resistant Staphylococcus aureus; NMR: Nuclear magnetic resonance; RP: Reversed phase; TLC: Thin-layer chromatography; UV: Ultraviolet; VLC: Vacuum liquid chromatography.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded188    
    Comments [Add]    
    Cited by others 13    

Recommend this journal