Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2019  |  Volume : 15  |  Issue : 61  |  Page : 199-203

New bioactive C15 acetogenins from the red alga Laurencia obtusa

1 Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
2 Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

Correspondence Address:
Nahed O Bawakid
Department of Chemistry, Faculty of Science, King Abdulaziz University, P. O. 80203, Jeddah 21589
Saudi Arabia
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_298_18

Rights and Permissions

Background and Objective: With regard to the uniqueness of the red algae of the genus Laurencia as the source of C15-acetogenins, along with the diversity of biological applications; the acetogenin content of the Red Sea Laurencia obtusa was investigated. Materials and Methods: Fractionation and purification of the CH2Cl2/MeOH extract were carried out by applying several chromatographic techniques, including column and preparative thin-layer chromatography; followed by a series of 1H nuclear magnetic resonance measurements to give rise of some interesting notes. Toxicity to Artemia salina was evaluated. The apoptosis induced by these two compounds was demonstrated by DNA fragmentation assay and microscopic observation. Results: A new rare chloroallene-based C15 acetogenin, laurentusenin (1) along with a new furan ring containing C15 acetogenin, laurenfuresenin (2), were isolated from the red alga L. obtusa. Comparing 1D and 2D NMR, MS, ultraviolet and infrared radiation spectral data for the newly isolated compounds with the reported bromoallene containing acetogenins spectral data was played the crucial role for characterization of their chemical structures. 1 and 2 exhibited bare toxicity (LD50 >12 mM) in test organism, A. salina and induced apoptotic death confirmed by DNA fragmentation and microscopic investigations. Conclusion: The isolated metabolite 1 showed unusual substituted allene side chain, while 2 inserted furan ring as a new acetogenin nucleus. Both compounds may play a role in apoptosis induction and initiation and propagation of inflammatory responses. Abbreviations used: NMR: Nuclear magnetic resonance; MS: Mass spectrometry; UV: Ultraviolet spectroscopy; IR: infrared radiation; EIMS: Electron ionization mass spectra; TLC: Thin-layer chromatography; PPP: Platelet poor plasma; PRPDS: platelet-rich plasma derived serum. DEPT: Destortionless Enhancement by Polarization Transfer; NOESY: Nuclear Overhauser Effect Spectroscopy; HSQC: Heteronuclear Single Quantum Coherence; HMBC: Heteronuclear Multiple-quantum Correlation; 1H-1H COSY: Correlation Spectroscopy.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded182    
    Comments [Add]    
    Cited by others 2    

Recommend this journal