Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2019  |  Volume : 15  |  Issue : 60  |  Page : 164-171

Metabolic profiling analysis of three processed rhizomes of Curcuma wenyujin Y.H. Chen et C. Ling by ultra-performance liquid chromatography/time-of-flight mass spectrometry

1 School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
2 School of Pharmaceutical Sciences, Wenzhou Medical University; Life Sciences Institute, Wenzhou University, Wenzhou, China

Correspondence Address:
Chunqin Mao
Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing, Jiangsu
Tulin Lu
Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing, Jiangsu
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_399_18

Rights and Permissions

Background: In China, rhizome of Curcuma wenyujin (CW) is used to improve blood stasis syndrome-related diseases for many years. Nonsteamed, steamed, and boiled with vinegar rhizomes of CW can be used as three different traditional Chinese medicine s, named as Pian-Jiang-Huang (PJH), Sheng-E-Zhu (SEZ), and Cu-E-Zhu (CEZ), respectively. After processing, the therapeutic effects have changed. Objective: In order to illustrate the effective substance of the three kinds of rhizome of CW, an ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) method coupled with statistical approach was developed. Materials and Methods: Fresh rhizomes of CW were processed into PJH, SEZ, and CEZ according to Chinese pharmacopoeia 2015. UPLC-Q/TOF-MS coupled with chemometric analysis was applied to compare the differences in chemical profiles of the three kinds of rhizome of CW. Results: In this study, 21 compositions in the rhizome of CW were identified. The one-way ANOVA of relative intensities of the 21 compositions was processed by SPSS software version 20.0. The column superposed graph of the relative intensities of 21 components shows that the total relative intensities of the 21 components in SEZ are the topmost and that of PJH is about the same as CEZ, but the proportion of each component is quite differ from each sample. Principal component analysis and orthogonal partial least squares discrimination analysis were processed by Simca-p14.1 software. Finally, five ions including curcumenone, curcumol, curzerenone, furanodiene, and germacrone were discovered to be the Q-Makers of the three kinds of rhizome of CW. Conclusion: This study provides a reliable research basis for the clinical application of the three kinds of rhizome of CW. Abbreviations used: PJH: Pian-Jiang-Huang; SEZ: Sheng-Er-Zhu; CEZ: Cu-Er-Zhu; CW: Curcuma wenyujin; PCA: Principal component analysis; OPLS-DA: Orthogonal partial least squares discrimination analysis; RT: Retention time; TCM: Traditional Chinese medicine; TIC: Total ion chromatogram; QC: Quality control; RSD: Relative standard deviation.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded371    
    Comments [Add]    
    Cited by others 4    

Recommend this journal