Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 14  |  Issue : 59  |  Page : 673-682

Zanthoxylum alatum attenuates lipopolysaccharide-induced depressive-like behavior in mice hippocampus


1 Department of Pharmacology and Toxicology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
2 Department of Psychiatry, Molecular Biology Research Building, University of Illinois, Chicago, IL, USA
3 Division of Life Science, Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
4 Department of Veterinary Pathology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
5 Department of Veterinary Biochemistry, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
6 Department of Veterinary Public Health, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India

Correspondence Address:
Chandana Choudhury Barua
Department of Pharmacology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati - 781 022, Assam
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_606_17

Rights and Permissions

Background: Zanthoxylum alatum (ZA) is used ethnomedicinally for the treatment of various diseases. It is used as a nerve tonic in weak patients and in vertigo. Objective: The beneficial effect of hydroethanolic extract of ZA seeds (HEZA) on lipopolysaccharide (LPS)-induced depression-like behavior in mice was studied with its possible underlying mechanisms. Materials and Methods: HEZA (100 and 200 mg/kg, p.o.) and imipramine (10 mg/kg, i.p) were administered for 14 consecutive days, followed by LPS (0.83 mg/kg i.p) injection, 30 min posttreatment. Behavioral studies including the open field test, forced swimming test, tail suspension test and sucrose preference test were performed after 24 h of LPS administration. Levels of pro-oxidant markers (Lipid peroxidation (LPO), Nitric oxide (NO) and antioxidant enzyme viz. Glutathione (GSH), Superoxide dismutase (SOD), Catalase (CAT), Glutathione peroxidase (GPx) were estimated biochemically; Norepinephrine (NE), Dopamine (DA) and 5-hydroxytryptamine (5-HT) levels by high-performance liquid chromatography; nuclear factor- κB (NFκB), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and caspase-3 mRNA expression using reverse transcription-polymerase chain reaction; the proteins of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB), in hippocampal tissue were evaluated by Western blot. Hesperidin, magnoflorine, melicopine, and sesamin were few phytoconstituents identified by liquid chromatography–electrospray ionization–tandem mass spectrometry studies. Results: Administration of LPS produced significant depression-like behavior by reducing the locomotor activity in open field test, increasing the immobility time in forced swim test and tail suspension test, increased LPO, NO, decreased GSH, SOD, CAT, GPx levels; lowered NE, DA and 5-HT level, upregulated NFκB, Nrf2 and Caspase-3 mRNA expression and downregulated BDNF, TrKB protein expression. Pretreatment with imipramine and HEZA reversed LPS-induced behavioral patterns, inhibited oxido-nitrosative stress, elevated antioxidant enzyme levels, and normalized the NE, DA, and 5-HT levels. The treatment also suppressed the mRNA expression of NFκB, Nrf2, and Caspase-3 gene with upregulation of BDNF protein expression, the molecular marker for depression. Conclusion: Antidepressant-like activity of HEZA is assumed to be mediated by antioxidant property, impending neuroinflammation, alteration of monoaminergic responses, and preventing BDNF depletion. Abbreviations used: HEZA: Hydroethanolic extract of Zanthoxylum alatum seeds; LPS: Lipopolysaccharide; OFT: Open field test; FST: Forced swim test; TST: Tail suspension test; SPT: Sucrose preference test; LPO: Lipid peroxidation; NO: Nitric oxide; GSH: Glutathione; SOD: Superoxide dismutase; CAT: Catalase; GPx: Glutathione peroxidase; HPLC: High-performance liquid chromatography; NFκB: Nuclear factor-κB; Nrf2: Nuclear factor (erythroid-derived 2)-like 2; RT-PCR: Reverse transcription-polymerase chain reaction; BDNF: Brain-derived neurotrophic factor; TrkB: Tropomyosin receptor kinase B; 5-HT: 5-hydroxytryptamine; NE: Norepinephrine; DA: Dopamine; PCA: Perchloric acid; LC-ESI-MS/MS: Liquid chromatography–electrospray ionization–tandem mass spectrometry; ZA: Zanthoxylum alatum.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1556    
    Printed34    
    Emailed0    
    PDF Downloaded135    
    Comments [Add]    
    Cited by others 2    

Recommend this journal