Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2018  |  Volume : 14  |  Issue : 56  |  Page : 383-389

Protective effect of ethanol extract of Cuscuta chinensis on lipopolysaccharide-induced acute kidney injury via suppressing the toll-like receptors 4-nuclear factor-κB pathway

1 Department of Pharmacology, College of Basic Medicine, Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Changchun 130117, China
2 Department of Pharmacology, Section of Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
3 Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, China

Correspondence Address:
Shuang Jiang
College of Basic Medicine, Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Changchun 130117
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_343_17

Rights and Permissions

Background: The seed of Cuscuta chinensis Lam. (Cuscuta, Convolvulaceae), is widely used in traditional Chinese medicine, with a variety of biological activity. However, the efficacy of C. chinensis has not been investigated in renal injury caused by sepsis. Objective: Our research was carried out to evaluate the effect of ethanol extract of C. chinensis seeds (ECCS) on lipopolysaccharide (LPS)-induced acute kidney injury (AKI) in Kunming mice, and explore its underlying mechanisms. Materials and Methods: ECCS was administered orally (10, 30, and 100 mg/kg bodyweight, once daily) to the AKI mice for 14 consecutive days. On the 14th day, LPS (7 mg/kg) was administered to induce AKI. Blood urea nitrogen (BUN), creatinine (Cr), cytokines, and antioxidant index were estimated. The protein phosphorylation was tested by Western blot. Results: Results indicated that ECCS (100 mg/kg) decreased LPS-induced augmented BUN by 58.54% (P < 0.001) and reduced Cr by 61.57% (P < 0.01), respectively. In addition, the evident reversion of renal pathological damage was observed in ECCS-pretreated mice. ECCS (100 mg/kg) also exhibited a reduction of cytokines (tumor necrosis factor-α, interleukin [IL]-1 β, and IL-6, P < 0.05 for all) in AKI mice. Furthermore, ECCS blocked the activation of the nuclear factor-κB (NF-κB) (p65 and inhibitor kappa B subunit) and reduced the toll-like receptors 4 (TLR4) expression. Conclusions: The protective effect of ECCS against LPS-induced AKI was at least partially associated with suppressing of a TLR4-NF-κB signaling pathway, which provides evidence of the renal protective function of C. chinensis extract. Abbreviations used: AKI: Acute kidney injury; LPS: Lipopolysaccharide; NF κB: Nuclear factor κB; IκB: Inhibitor kappa B; IL: Interleukin; ECCS: Ethanol extract of C. chinensis seed; SOD: Superoxide dismutase; TLR4: Toll like receptor 4; BUN: Blood urea nitrogen; Cr: Creatinine; MDA: Malondialdehyde; PVDF: Polyvinylidene fluoride; TBST: TBS-Tween solution; iNOS: Inducible NOS; ROS: Reactive oxygen species; TH: T Helper; TBHB: Tert-butyl hydroperoxide; IFN-γ: Interferon-γ.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded133    
    Comments [Add]    

Recommend this journal