Optimal processing conditions of Boswellia carteri Birdw. using response surface methodology
Jee-Hyun Yoon1, Jung-Hoon Kim2, Seong-Sik Ham1, Bu-Yeon Gang1, Seung-Ho Lee3, Goya Choi4, Young-Sik Kim5, Guemsan Lee6, Young-Sung Ju1
1 Department of Herbology, College of Korean Medicine, Woosuk University, Jeonju-si, Jeollabuk-do 54986, Republic of Korea 2 Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan-si, Gyeongsangnam-do 50612, Republic of Korea 3 Mibyeong Research Center, Korea Institute of Oriental Medicine, Yuseong-gu, Daejeon 34054, Republic of Korea 4 K–Herb Research Center, Korea Institute of Oriental Medicine, Yuseong-gu, Daejeon 34054, Republic of Korea 5 Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea 6 Department of Herbology, College of Korean Medicine, Wonkwang University, Iksan-si, Jeollabuk-do 54538, Republic of Korea
Correspondence Address:
Young-Sung Ju Department of Herbology, College of Korean Medicine, Woosuk University, 61, Seonneomeo 3-gil, Wansan-gu, Jeonju-si, Jeollabuk-do 54986 Republic of Korea
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/pm.pm_140_17
|
Background: Boswellia carteri Bridw. is being widely used for its anti-inflammatory properties, as well as for wound healing, antimicrobial, and immunomodulatory properties, and boswellic acids (BAs) are considered to be the main active constituents. Objectives: To investigate optimal conditions of stir-baking process for the resin of B. carteri with vinegar of using response surface methodology (RSM). Materials and Methods: The concentration of acetic acid, heating temperature, and heating time were set as influential factors, and the yields of chemical compounds were the response values which were optimally designed by a Box–Behnken design. The amounts of 11-keto-β-boswellic acid (KBA) and α-boswellic acid (αBA) in B. carteri resin were quantified using high-performance liquid chromatography analysis. Results: Maximum amounts of KBA and αBA in B. carteri resin were obtained using 6% acetic acid for 10 min at 90°C in preliminary test. Two factor interactions, such as acetic acid concentration–heating temperature and heating temperature–heating time, were significantly observed by multiple regression analysis. Optimal processing conditions from RSM were 5.83% for acetic acid concentration, 9.56 min for heating time, and 89.87°C for heating temperature. Under the modified conditions, the experimental value of the response was 11.25 mg/g, which was similar to the predicted value. Conclusions: The results suggest that the optimal conditions for the stir-baking process of B. carteri resin were determined by RSM, which was reliable and applicable to practical processing of herbal medicine.
Abbreviations used: BAs: Boswellic acids; KBA: 11 keto β boswellic acid; αBA: α boswellic acid; BBD: Box–Behnken design; RSM: Response surface method; HPLC: High performance liquid chromatography; LOD: Limits of determination; LOQ: Limits of quantification; RSD: Relative standard deviation; ANOVA: Analysis of variance.
|