Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 

 
  Table of Contents  
ORIGINAL ARTICLE
Year : 2017  |  Volume : 13  |  Issue : 51  |  Page : 533-538  

Methanolic extract of Costus pictus D. DON induces cytotoxicity in liver hepatocellular carcinoma cells mediated by histone deacetylase inhibition


Department of Biomedical Sciences, Marine Biotechnology and Bioproducts Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India

Date of Submission25-Nov-2016
Date of Acceptance04-Jan-2017
Date of Web Publication11-Oct-2017

Correspondence Address:
M A Jayasri
Marine Biotechnology and Bioproducts Laboratory, School of Biosciences and Technology, VIT University, Vellore - 632 014, Tamil Nadu
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_524_16

Rights and Permissions
   Abstract 


Background: Leaves of Costus pictus D. Don, (insulin plant) are used as dietary supplement for the treatment of diabetes. Objective: The antidiabetic activity of this plant is well documented, but its activity on different cell types and mechanism remains unknown. Thus, the present study evaluates the cytotoxicity of C. pictus methanolic extract (CPME) against various cancer and normal cells. Materials and Methods: Dried leaves of C. pictus were extracted using methanol and were subjected to histone deacetylase (HDAC) inhibition and toxicity studies. Results: The CPME displayed a selective toxicity toward tested cancer cells in a dose- and time-dependent manner. CPME exhibited significant cytotoxicity on Liver hepatocellular carcinoma cells (Hep G2) (half maximal inhibitory concentration IC50 = 6.7 μ g/ml). Since CPME demonstrates both antidiabetic, anticancer activity, and HDAC enzyme play a detrimental role in both the complications, we have evaluated the CPME-induced HDAC regulation on Hep G2 cell lines. CPME showed a notable HDAC inhibition (55%). Furthermore, CPME did not show any genotoxicity or membrane instability at the tested concentrations. Conclusion: CPME demonstrates selective cytotoxicity toward tumor cells at a lower concentration through HDAC inhibition.
Abbreviations used: A549: Human lung carcinoma cells, CPME: Costus pictus methanolic extract, DMEM: Dulbecco's modified eagle's medium, DMSO: Dimethyl sulfoxide, ELISA: Enzyme-linked immunosorbent assay, 5-FU: 5-Fluorouracil, Hep G2: Liver hepatocellular carcinoma cells, HEK-293: Human embryonic kidney cells, Hela: Human cervical carcinoma cells, HT-29: Human colorectal adenocarcinoma cells, HDAC: Histone deacetylase, IC50: Half maximal inhibitory concentration, MCF-7: Human breast adenocarcinoma cells, MDA-MB-435S: Human breast cancer cells, MTT: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide, NFF: Neonatal foreskin fibroblasts, PHA: Phytohemagglutinin, PBS: Phosphate buffer saline, RPMI-1640: Roswell Park Memorial Institute Medium.

Keywords: Costus pictus methanolic extract, cytotoxicity, liver hepatocellular carcinoma cells, histone deacetylase


How to cite this article:
Neethu P V, Suthindhiran K, Jayasri M A. Methanolic extract of Costus pictus D. DON induces cytotoxicity in liver hepatocellular carcinoma cells mediated by histone deacetylase inhibition. Phcog Mag 2017;13, Suppl S3:533-8

How to cite this URL:
Neethu P V, Suthindhiran K, Jayasri M A. Methanolic extract of Costus pictus D. DON induces cytotoxicity in liver hepatocellular carcinoma cells mediated by histone deacetylase inhibition. Phcog Mag [serial online] 2017 [cited 2021 Oct 24];13, Suppl S3:533-8. Available from: http://www.phcog.com/text.asp?2017/13/51/533/216365



Summary

  • C. pictus is used as munching supplementary food for the treatment of diabetes
  • CPME selectively induces cytotoxicity in cancer cells leaving normal cells healthy
  • Selective toxicity to cancer cells are attributed by the inhibition of HDAC enzyme
  • CPME did not show any genotoxicity and membrane instability in blood cells
  • CPME could be potential source of HDAC inhibitor.



   Introduction Top


Plant-based products are major components in the discovery of new therapeutic drugs and have received much attention as they are good source of biologically active substances including antioxidants, hypoglycemic, and hypolipidemic agents.[1] Plants of Zingiberaceae family are traditionally used for the management of various diseases.[2]Costus pictus D. Don, known as “spiral ginger” or insulin plant, is a medicinal herb originated in Mexico and introduced to India.[3] It is grown in gardens especially in the state of Kerala. It is used as a munching supplementary food for the management of diabetes in Kerala. The leaves and rhizomes of this plant possess biological activities such as antidiabetic, antibacterial, antioxidant, and cytotoxicity.[4],[5],[6]

Histone deacetylase (HDAC) plays an important role in epigenetic regulation of gene expression by catalyzing the removal of acetyl groups, stimulating chromatin condensation, and promoting transcription repression.[7] HDAC inhibitors are either natural products or synthetic compounds that inhibit Zn 2+-dependent HDAC enzymes.[8] Their efficacy and mode of action during cancer, diabetes, obesity, and inflammation are well documented.[9] Research has shown that there are increased levels of HDACs in tumor cells and inhibitors of these enzymes can be considered as a class of anticancer drugs.[10] HDAC inhibitors function through diverse mechanisms, including the promotion of cell cycle arrest, apoptosis and the inhibition of angiogenesis.[11] Furthermore, the HDACs regulate histone acetylation and transcriptional factors which are involved in glucose homeostasis and thus plays a crucial role in the regulation of glucose metabolism.[12] Several reports indicate that HDACs are involved in the pathogenesis of diabetes mellitus through regulating glucose homeostasis by a number of pathways.[13] HDACs have also been proven to decrease pancreatic insulin production and secretion.[14] Therefore, HDACs serve as a potential targets for the treatment of diabetes-related complications through the regulation of insulin resistance and secretion.

C. pictus methanolic extract (CPME) possess both anticancer and antidiabetic activity,[15],[16] we presume that the CPME could be a possible HDAC regulator. Despite the preliminary reports on the toxicity of the extracts of C. pictus, molecular mechanism of CPME against various cancer cells have not been explored till date. Hence, the current study was carried out to evaluate the cytotoxic activity of methanolic extract of C. pictus against normal and tumor cell lines.

In addition, cytotoxic drugs induce various adverse effects resulting from interference with structures or processes essential for cell survival, proliferation, or function. These effects may involve the integrity of membrane, cellular metabolism, the synthesis and degradation or release of cellular constituents or products, ion regulation, and cell division.[17] Thus, it is important to conduct toxicology studies in the drug discovery process to determine the safety and nonadverse effect of potential drug candidates. In this study, we have analyzed cytotoxic, membrane stability, and genotoxic effect of CPME on human blood cells. Overall, this study outlines the effect of CPME against various cancer and normal cells, HDAC inhibition, hemolysis, and genotoxicity.


   Materials and Methods Top


Plant material

Fresh C. pictus leaves were collected from Kerala Agricultural University, Mannuthy. A voucher specimen was submitted in VIT University herbal garden, Vellore (VIT/CP/G1). The leaves were shade dried; powdered and 100 g was extracted using 250 ml of methanol in soxhlet apparatus. The solvents were evaporated and the residue was dried using rotary evaporator (Super Fit, Rotavap, model, PBU-6, India). The dried extract was subjected to lyophilization (Lark, Penguin Classic Plus, India) and the powdered extract was used for further assays.

Cell culture

Vero (African green monkey kidney), human embryonic kidney (HEK)-293, human cervical carcinoma cells (Hela), human colorectal adenocarcinoma cells (HT-29), human lung carcinoma (A549), and neonatal foreskin fibroblasts (NFF) cell lines were obtained from the Human breast adenocarcinoma cells American type culture collection and human breast adenocarcinoma (MCF-7), Liver hepatocellular carcinoma cells (Hep G2), human breast cancer cell (MDA-MB-435S) lines were obtained from National Centre for Cell Science, Pune (India). The cell lines were maintained in Roswell Park Memorial Institute Medium (RPMI) 1640/DMEM/L-15 (Himedia/Gibco, Mumbai, India) medium supplemented with 10% fetal bovine serum (FBS) (v/v) and 100 mg/L streptomycin and 100 IU/mL penicillin (Himedia, India), at 37°C in 5% CO2.

Cell viability assays

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay

The cytotoxic activity of CPME was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay. Cancer and normal cells were incubated with 2, 4, 6, 8, and 10 μg/ml of CPME for 24 h at 37°C. The MTT assay was performed using cell Quanti-MTT cell viability assay kit (Bioassay Systems) and the procedure was followed as per the user manual. The optical density was measured at 570 nm for each well on a multiwell plate reader (Bio-Rad). The wells with only culture medium or treated with 0.1% of dimethyl sulfoxide served as control. The average of the blank controls were determined and subtracted from the absorbance values. The same protocol was followed for 5-fluorouracil (positive control). The assay was carried out in triplicates. The graph was plotted with cell viability against the concentrations of the compound. The half maximal inhibitory concentration (IC50) values and their respective 95% confidence intervals were calculated using Bliss and Finney methods.

Morphological alterations

Hep G2 cells were treated with various concentrations (2, 4, 6, 8, and 10 μg/ml) of CPME and incubated for 24 h. The cell morphology was observed and photographed under an inverted microscope (Hund Wetzlar, Germany).

Histone deacetylase inhibition assay

HDAC activity was determined using EpiQuik HDAC Activity/Inhibition Assay Kit (Epigentek, Farmingdale, NY, USA) according to manufacturer's instructions. Briefly, Hep G2 cells were seeded in 6-well plate. After 24 h, cells were treated with 0.5 μg/ml of CPME for 48 h. After treatment, nucleus was prepared using Nuclear Extract Kit (Active Motif, Carlsbad, CA, USA). Briefly, cells were washed with ice-cold phosphate buffer saline (PBS) containing phosphatase inhibitors, resuspended with hypotonic buffer and detergent, and then centrifuged to obtain cytosolic fraction. Nuclear fractions were collected by suspending nuclear pellet with lysis buffer and centrifugation was again carried out. Biotinylated HDAC substrate was added to 8-well strip plate for 45 min. After washing the mixtures containing nuclear extract and HDAC assay buffer were added to the plate. After 1 h, the plate was washed, and the capture antibody was added for 1 h. After adding detection antibody and developing solution, the absorbance was recorded at 450 nm in an enzyme-linked immunosorbent assay plate reader (Bio-Tek Instruments Inc.) after adding stop solution. The known HDAC inhibitor trichostatin A (25 nM) (Sigma, India) was used as positive control.

In vitro hemolytic assay

Human erythrocytes were prepared from the peripheral blood (O +) of healthy donor. The hemolytic assay was performed as described earlier.[18] The blood was used within 24 h after bleeding and washed three times in nine volumes of sterile 0.9% NaCl solution. After each washing, cells were centrifuged at 2000 rpm for 5 min and the supernatant was discarded. The final pellet was diluted 1/9 (v/v) in sterile Dulbecco's PBS, pH 7.0 containing 0.5 mM boric acid, and 1 mM calcium chloride. The different concentration of CPME (5, 10, 20, 40, 60, 80, and 100 μg/ml) was mixed with 0.5 ml of normal erythrocyte suspension in small tubes and the final volume was made to 2 ml with 0.15 M saline. The mixture was incubated at 37°C for an hour and centrifuged at 5000 rpm for 10 min. The absorbance of the supernatant was measured at 540 nm. The last well served as positive control containing 20 ml of 0.1% Triton X–100 in 0.85% saline.

Microscopic observation

The morphology of erythrocytes after treatment with CPME was also assessed by viewing the cells under light microscope (×100).

Genotoxicity analysis using leukocytes

Genotoxicity of CPME was carried out as described earlier.[19] Briefly, 5 ml of blood was obtained from healthy volunteers using heparinized syringe. Leukocyte cultures were incubated along with CPME (5, 10, 20, 40, 60, 80, and 100 μg/ml). Vials containing 0.5 ml of blood was inoculated in 5 ml of RPMI-1640 medium containing 1.5 ml of FBS, 0.1 ml of phytohemagglutinin under aseptic condition. The cultures were then incubated for 72 h at 37°C. At the end of the incubation period, the dividing cells were arrested at metaphase by the addition of two drops of 0.1% colchicine solution to each culture vial. The cultures were incubated for 20 min at 37°C. Leukocytes were harvested after 20 min by centrifuging cell suspension at 2000 rpm to remove the culture medium, addition of hypotonic solution (KCl 0.075 M) at 37°C for 6–7 min and treated twice with Carnoy's fixative (methanol:glacial acetic acid, 3:1). Slides were then dried, stained with Giemsa and Observed under light microscope (Labomed) at 100×. Mitomycin C (1 μg/ml) was used as positive control and culture tubes without any extract were treated as negative control.

Micronuclei detection

The protocol for the micronuclei detection was adopted from Fenech.[20] For micronuclei detection, 0.5 ml of blood was added in 5 ml of RPMI-1640 medium. Five culture vials were made and incubated for 72 h at 37°C. The cultures were shaken and carbon dioxide was released once in 24 h. At 44th h, two drops of cytochalasin B were added to each vial, and the vials were kept for incubation. At the 71st h, various concentrations (5, 10, 20, 40, 60, 80, and 100 μg/ml) of CPME were added to each vial. The vials were kept for incubation for 1 h. After incubation, cells were harvested as per the standard protocol and stained using Giemsa. The cells were observed under light microscope (Labomed) at 100×.


   Results Top


Cytotoxic activity of Costus pictus methanolic extract on cancer and normal cells

The effect of CPME was examined on cancer (Hep G2, A549, HT-29, MCF-7, and Hela) and normal cells (MDA-MB-435S, Vero, HEK-293, and NFF) and their respective IC50 values are shown in [Table 1]. All the tested cancer cells were susceptible to the CPME. The effect of various concentrations of CPME on the tested cells exhibited concentration and time-dependent inhibition. The strongest cytotoxicity was observed on Hep G2 cells at a concentration of 10 μg/ml, and the IC50 value was found to be 6.7 μg/ml. Hence, further studies were performed using Hep G2 cells. About 30% cell death was observed when treated with 4 μg/ml of CPME for 24 h [Figure 1]. The percentage of cell death was doubled when incubated for 48 h at the same concentration. CPME also exhibited notable cytotoxicity against A549, HT-29, MCF-7, Hela cells and their IC50 values were 9.1, 13.9, 14.2, and 26.8 μg/ml, respectively. Comparatively, CPME showed less or no cytotoxicity toward the tested normal cells. All the results were compared with a positive control, 5-FU.
Table 1: Doses inducing 50% cell inhibition (IC50) by Costus pictus methanolic extract and positive control (5-fluorouracil) on cancer and normal cells

Click here to view
Figure 1: Cytotoxic activity of Costus pictus methanolic extract on liver hepatocellular carcinoma cells. Cells were treated with various concentrations (2, 4, 6, 8, and 10 μg/ml) of Costus pictus methanolic extract. The experiments are carried out in triplicates and results are expressed as mean ± standard deviation

Click here to view


Morphological alteration of liver hepatocellular carcinoma cells induced by Costus pictus methanolic extract

Hep G2 cells were treated with various concentrations (2–10 μg/ml) of CPME. As shown in [Figure 2]a, untreated cells appear epithelial and very few round cells are observed. Cells treated with 8 μg/ml of CPME showed morphological alterations including adhesion loss and sporadic distribution [Figure 2]b. These morphological changes were seen within 3 h after incubation with CPME and lasted throughout the whole period of treatment.
Figure 2: Morphological changes of liver hepatocellular carcinoma cells under a light microscope. (a) Control liver hepatocellular carcinoma cells. (b) Liver hepatocellular carcinoma cells after exposure to Costus pictus methanolic extract (8 μg/ml) for 24 h

Click here to view


In vitro histone deacetylase inhibitory effect of Costus pictus methanolic extract on liver hepatocellular carcinoma cells

The present study elucidates HDAC inhibitory activity of CPME on Hep G2 cells [Figure 3]. The results indicate that the CPME significantly induces the HDAC inhibition on Hep G2 cells in a dose-dependent manner (0.5–8 μg/ml). Maximum HDAC inhibition (56%) was seen with 8 μg/ml of CPME whereas 68% of inhibition was observed with positive control trichostatin A. It should be noted that the IC50 value against Hep G2 cell is 6.7 μg/ml and induced a drastic morphological changes when observed at 8 μg/ml of CPME (IC50 = 7.1 μg/ml).
Figure 3: Histone deacetylase inhibition studies using Costus pictus methanolic extract and trichostatin A (positive control). Results were expressed as relative histone deacetylase activity with respect to positive control. Each value represents the mean ± standard deviation, performed in triplicates. Asterisks (*) denote significant differences vs control (P < 0.0001)

Click here to view


In vitro hemolytic activity

In vitro hemolytic activity of CPME was evaluated using normal human erythrocytes. The CPME exhibited weak or no activity on the lysis of erythrocytes. Both untreated and treated erythrocytes exhibited round, biconcave disc shape morphology [Figure 4]. Microscopic examination revealed that human erythrocytes treated with 50 μg/ml of CPME showed no significant morphological changes as compared to control (PBS).
Figure 4: Morphological changes of (a) control untreated erythrocytes. (b) Erythrocytes after exposure to Costus pictus methanolic extract (50 μg/ml)

Click here to view


Chromosome aberration

The metaphase analysis of human leukocytes exposed to various concentrations of CPME (5–100 μg/ml) was evaluated in vitro and the results are shown in [Figure 5]. CPME showed insignificant changes in the chromosome aberrations in comparison to the positive control (mitomycin C). Relatively, higher frequencies of breaks and gaps were observed in the positive control. Further, there were no micronuclei formation observed in the CPME-treated leukocytes.
Figure 5: Effect of Costus pictus methanolic extract on leukocyte chromosomes. (a) A regular sized pair of intact chromosomes was observed with negative control. (b) Metaphase stages of human leukocytes after treatment of Costus pictus methanolic extract (50 μg/ml). (c) Positive control, mitomycin C (1 μg/ml)

Click here to view



   Discussion Top


Bioactive compounds derived from plants have played significant role in drug discovery and development. Phytochemicals from the medicinal plants are developed for the treatment of many human ailments.[21] Plant extracts have been used as traditional herbal remedies to treat diseases such as cancer and diabetes.[22],[23] The phytochemical screening of C. pictus showed the presence of saponin, glycosides, flavonoids, phytosterols, and carbohydrates in detectable amount.[24]C. pictus extracts have demonstrated antibacterial, antioxidant, antidiabetic, cytotoxic, and antiglycation activities.[25],[26],[27],[28] It was also been reported that C. pictus contain several bioactive compound producing genes.[29] However, there are no extensive studies on the anticancer property of this plant.

Epigenetic regulation of gene expression is recognized as new approach to treat diseases such as cancer and diabetes. In particular, HDAC inhibitors provides a significant role as anticancer agents.[30] The HDAC expression is upregulated during various clinical conditions such as cancer, diabetes, and inflammation. Recent studies state that the HDACs regulate glucose homeostasis and can be targeted for the treatment of diabetic microvascular complications.[31] Further, HDAC inhibitors are shown to promote β-cell development, proliferation, differentiation, and function. These inhibitors also positively affect the late diabetic-related complications. Several studies have addressed the isolation of HDAC inhibitors from various plants and microbes to be used as therapeutic agents for cancer and diabetes treatment. However, the inhibitors that have cleared phase III human trials are very limited. C. pictus possess both antidiabetic and cytotoxic activities.[32],[33] With proven antidiabetic activity, C. pictus extracts can be potential HDAC modulators. In light of its important pharmacological activities, the objective of present study is to establish its anticancer efficiency and its HDAC inhibition. To determine whether the antidiabetic and anticancer activity of C. pictus is due to HDAC modulation, the HDAC inhibition study was performed using Hep G2 cells. The results show a reduced HDAC activity on treatment with CPME. The CPME showed a maximum of 56% inhibition (8 μg/ml) and IC50 of 7.1 μg/ml. The known HDAC inhibitor, trichostatin A displayed a strong inhibition (67%) at 25 nM concentration. Several studies have reported that HDAC inhibitors potentially inhibit cell proliferation and induce apoptosis in tumor cells.[34] Comparatively, HDACs are found to be upregulated in cancer cells, and any HDAC inhibitors should selectively inhibit the cancer cell proliferation.[35] Our results demonstrate that CPME is more toxic to cancer cells leaving normal cells less or nontoxic. This inhibitory effect of plant extract could be attributed to a direct ionic interaction of the active ingredients of plant with the active zinc site of HDAC enzyme since classical HDAC's are zinc-dependent enzymes with a highly conserved Zinc domain.[36] As reported by Lundh et al., the HDAC inhibitors potentially inhibit the Zn 2+-dependent HDACs in animal models of diabetes mellitus.[37] Reports indicate isolation of novel HDAC Inhibitors from n-hexane fractions of Zingiber zerumbet.[38] Further, the plant extracts and/or synthetic compounds are reported to have anticancer and antidiabetic property through HDAC inhibition.[39],[40]

Cytotoxic potential of CPME was determined by MTT assay against various cancerous and normal cells. CPME exhibits cytotoxic potential against all the tested cancer cell lines under in vitro conditions. CPME showed highest cytotoxic activity in Hep G2 cells (IC50 = 6.7 μg/ml). The alterations in the cellular morphology of Hep G2 cells exposed to CPME showed detachment of cells with increasing concentration. The CPME also induced significant changes in the morphology of Hep G2 at higher concentration (8 μg/ml). An IC50 value below 20 μg/ml was observed for Hep G2, A549, HT-29, and MCF-7 cells which falls within NCI guidelines,[41] and thus considered to have anticancer potential. It should also be noted that the CPME selectively inhibits the proliferation of cancer cells leaving normal cells less toxic. The above data demonstrate the potential anticancer activity of CPME.

In the present study, we have also determined the effect of CPME in normal blood cells. The hemolytic assay was performed using erythrocytes, and the results show that CPME did not possess any blood cell lysis property. The CPME was found to be nontoxic even at 50 μg/ml concentration. Erythrocytes represent a good model for the study of membrane stability, and the assessment of membrane stability is important during preclinical drug discovery process.[42] The mechanical stability of the erythrocyte membrane is a good indicator of the effect of various bioactive compounds and CPME do not cause any membrane damage to erythrocytes. These data suggest that the cytotoxicity of CPME is not due to cell membrane disruption or lytic property. Furthermore, the effect of CPME was evaluated using leukocytes for genotoxic property. The results show that tested dosages of CPME were nontoxic against human leukocytes in vitro and hence the cytotoxicity of CPME is not due to genotoxicity. CPME (50–200 μg/ml) did not induce any chromosomal gaps and breaks, and no micronucleus formation was observed in CPME-treated leukocytes.


   Conclusion Top


The present study indicates that the CPME selectively targets the cancer cell via HDAC inhibition. It also highlights that the anticancer and antidiabetic activity of CPME is due HDAC inhibition and requires further studies at molecular level. The isolation and characterization of HDAC inhibitor form C. pictus are in progress in our laboratory.

Acknowledgement

The authors would like to thank the VIT University for the support to carry out this research.

Financial support and sponsorship

This study is financially supported by the institutional grant.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Marles RJ, Farnsworth NR. Antidiabetic plants and their active constituents. Phytomedicine 1995;2:137-89.  Back to cited text no. 1
    
2.
Stoilova I, Krastanov A, Stoyanova A, Denev P, Gargova S. Antioxidant activity of a ginger extract (Zingiber officinale). Food Chem 2007;102:764-70.  Back to cited text no. 2
    
3.
Remya R, Daniel M. Phytochemical and pharmacognostic investigation of antidiabetic Costus pictus D. Don. Int J Pharm Biomed Res 2012;3:30-9.  Back to cited text no. 3
    
4.
Jayasri MA, Mathew L, Radha A. A report on the antioxidant activity of leaves and rhizomes of Costus pictus D. Don. Int J Integr Biol 2009;5:20-6.  Back to cited text no. 4
    
5.
Kavitha R.In vitro antioxidant studies of Costus pictus leaf. Int J Res Pharm Biomed Sci 2013;4:159-64.  Back to cited text no. 5
    
6.
Majumdar M, Parihar PS. Antibacterial, anti-oxidant and antiglycation potential of Costus pictus from Southern region, India. Asian J Plant Sci Res 2012;2:95-101.  Back to cited text no. 6
    
7.
Shi Y, Sawada J, Sui G, Affar el B, Whetstine JR, Lan F, et al. Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 2003;422:735-8.  Back to cited text no. 7
    
8.
Senawong T, Misuna S, Khaopha S, Nuchadomrong S, Sawatsitang P, Phaosiri C, et al. Histone deacetylase (HDAC) inhibitory and antiproliferative activities of phenolic-rich extracts derived from the rhizome of Hydnophytum formicarum Jack.: Sinapinic acid acts as HDAC inhibitor. BMC Complement Altern Med 2013;13:232.  Back to cited text no. 8
    
9.
Carew JS, Giles FJ, Nawrocki ST. Histone deacetylase inhibitors: Mechanisms of cell death and promise in combination cancer therapy. Cancer Lett 2008;269:7-17.  Back to cited text no. 9
    
10.
Fredly H, Gjertsen BT, Bruserud O. Histone deacetylase inhibition in the treatment of acute myeloid leukemia: The effects of valproic acid on leukemic cells, and the clinical and experimental evidence for combining valproic acid with other antileukemic agents. Clin Epigenetics 2013;5:12.  Back to cited text no. 10
    
11.
Meng J, Zhang HH, Zhou CX, Li C, Zhang F, Mei QB. The histone deacetylase inhibitor trichostatin A induces cell cycle arrest and apoptosis in colorectal cancer cells via p53-dependent and -independent pathways. Oncol Rep 2012;28:384-8.  Back to cited text no. 11
    
12.
Wang X, Wei X, Pang Q, Yi F. Histone deacetylases and their inhibitors: Molecular mechanisms and therapeutic implications in diabetes mellitus. Acta Pharm Sin B 2012;2:387-95.  Back to cited text no. 12
    
13.
Khan S, Jena GB. Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: Study in juvenile diabetic rat. Chem Biol Interact 2014;213:1-12.  Back to cited text no. 13
    
14.
Christensen DP, Dahllöf M, Lundh M, Rasmussen DN, Nielsen MD, Billestrup N, et al. Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus. Mol Med 2011;17:378-90.  Back to cited text no. 14
    
15.
Sidhu AK, Wani SJ, Tamboli PS, Patil SN.In vitro evaluation of anti-diabetic activity of leaf and callus extracts of Costus pictus. IJSR 2014;3:1622-5.  Back to cited text no. 15
    
16.
Sathuvan M, Vignesh A, Thangam R, Palani P, Rengasamy R, Murugesan K.In vitro antioxidant and anticancer potential of bark of Costus pictus D. Don. Asian Pac J Trop Biomed 2012;2:S741-9.  Back to cited text no. 16
    
17.
Seibert H, Balls M, Fentem JH, Bianchi V, Clothier RH, Dierickx PJ, et al. Acute toxicity testing in vitro and the classification and labeling of chemicals: The report and recommendations of ECVAM workshop. Altern Lab Anim 1996;24:499-510.  Back to cited text no. 17
    
18.
Suthindhiran K, Kannabiran K. Hemolytic activity of Streptomyces VITSDK1 spp. isolated from marine sediments in Southern India. J Mycol Med 2009;19:77-86.  Back to cited text no. 18
    
19.
Swierenga SH, Heddle JA, Sigal EA, Gilman JP, Brillinger RL, Douglas GR, et al. Recommended protocols based on a survey of current practice in genotoxicity testing laboratories, IV. Chromosome aberration and sister-chromatid exchange in Chinese hamster ovary, V79 Chinese hamster lung and human lymphocyte cultures. Mutat Res 1991;246:301-22.  Back to cited text no. 19
    
20.
Fenech M. The in vitro micronucleus technique. Mutat Res 2000;455:81-95.  Back to cited text no. 20
    
21.
Kanthal LA, Dey A, Satyavathi K, Bhojaraju P. Antibacterial potential of methanolic extract of Gyrocarpus asiaticus willd. Asian J Pharm Clin Res 2014;7:192-4.  Back to cited text no. 21
    
22.
Kumar N, Manju S, Kader A, Kumar D.In vitro α-glucosidase inhibition, antioxidant, anticancer, and antimycobacterial properties of ethyl acetate extract of Aegle tamilnadensis Abdul Kader (Rutaceae) Leaf. Appl Biochem Biotechnol 2015;175:1247-61.  Back to cited text no. 22
    
23.
Dhriti V, Chowdary PV, Rahul J, Vishank G, Shivaji BB. Free radical scavenging and anti-diabetic activity of Kigelia pinnata. WJPPS 2014;3:1249-62.  Back to cited text no. 23
    
24.
Thomas S, Devi BS. Phytochemical and in vitro anthelmintic studies of hydro-alcoholic extract of Costus pictus D. DON. Int J Pharm Pharm Sci 2013;5:639-41.  Back to cited text no. 24
    
25.
Gireesh G, Thomas SK, Joseph B, Paulose CS. Antihyperglycemic and insulin secretory activity of Costus pictus leaf extract in streptozotocin induced diabetic rats and in in vitro pancreatic islet culture. J Ethnopharmacol 2009;123:470-4.  Back to cited text no. 25
    
26.
Reddy LJ, Jose B. Evaluation of antibacterial activity of the leaf essential oil of Costus pictus D. Don from South India. IJCPR 2010;2:68-70.  Back to cited text no. 26
    
27.
Nadumane VK, Rajashekar S, Narayana P, Adinarayana S, Vijayan S, Prakash S, et al. Evaluation of the anticancer potential of Costus pictus on fibrosarcoma (HT-1080) cell line. J Nat Pharm 2011;2:72-6.  Back to cited text no. 27
  [Full text]  
28.
Rajasekaran M, Kalaichelvan S. Antioxidative Role of Costus pictus D. DON in hyperglycemic rats administered with alloxon. J Pharm Sci Res 2014;6:24-8.  Back to cited text no. 28
    
29.
Annadurai RS, Jayakumar V, Mugasimangalam RC, Katta MA, Anand S, Gopinathan S, et al. Next generation sequencing and de novo transcriptome analysis of Costus pictus D. Don, a non-model plant with potent anti-diabetic properties. BMC Genomics 2012;13:1-15.  Back to cited text no. 29
    
30.
Ververis K, Hiong A, Karagiannis TC, Licciardi PV. Histone deacetylase inhibitors (HDACIs): Multitargeted anticancer agents. Biologics 2013;7:47-60.  Back to cited text no. 30
    
31.
Crunkhorn S. Metabolic disease: New role for HDACs in glucose homeostasis. Nat Rev Drug Discov 2011;10:492.  Back to cited text no. 31
    
32.
Al-Romaiyan A, Jayasri MA, Mathew TL, Huang GC, Amiel S, Jones PM, et al. Costus pictus extracts stimulate insulin secretion from mouse and human islets of Langerhans in vitro. Cell Physiol Biochem 2010;26:1051-8.  Back to cited text no. 32
    
33.
Choudhury JD, Maurya AK, Tripathi S, Ranga R, Kahrana M, Samyal ML. Estimation of the anti-proliferative potential of Costus pictus on MOLT-4 human cancer cell line. Int J Biopharm toxicol Res 2012;2:244-50.  Back to cited text no. 33
    
34.
Suffness M, Pezzuto JM. Assays related to cancer drug discovery. In: Hosettmann K, editor. Methods in Plant Biochemistry: Assays for bioactivity: London: Academic Press; 1990. p. 71-133.  Back to cited text no. 34
    
35.
Borutinskaite VV, Magnusson KE, Navakauskiene R. Histone deacetylase inhibitor BML-210 induces growth inhibition and apoptosis and regulates HDAC and DAPC complex expression levels in cervical cancer cells. Mol Biol Rep 2012;39:10179-86.  Back to cited text no. 35
    
36.
Venkataramani V, Rossner C, Iffland L, Schweyer S, Tamboli IY, Walter J, et al. Histone deacetylase inhibitor valproic acid inhibits cancer cell proliferation via down-regulation of the alzheimer amyloid precursor protein. J Biol Chem 2010;285:10678-89.  Back to cited text no. 36
    
37.
Lundh M, Galbo T, Poulsen SS, Mandrup-Poulsen T. Histone deacetylase 3 inhibition improves glycaemia and insulin secretion in obese diabetic rats. Diabetes Obes Metab 2015;17:703-7.  Back to cited text no. 37
    
38.
Chung IM, Kim MY, Park WH, Moon HI. Histone deacetylase inhibitors from the rhizomes of Zingiber zerumbet. Pharmazie 2008;63:774-6.  Back to cited text no. 38
    
39.
Son IH, Chung IM, Lee SI, Yang HD, Moon HI. Pomiferin, histone deacetylase inhibitor isolated from the fruits of Maclura pomifera. Bioorg Med Chem Lett 2007;17:4753-5.  Back to cited text no. 39
    
40.
Pal-Bhadra M, Ramaiah MJ, Reddy TL, Krishnan A, Pushpavalli SN, Babu KS, et al. Plant HDAC inhibitor chrysin arrest cell growth and induce p21WAF1 by altering chromatin of STAT response element in A375 cells. BMC Cancer 2012;12:1-17.  Back to cited text no. 40
    
41.
Vijayarathna S, Sasidharan S. Cytotoxicity of methanol extracts of Elaeis guineensis on MCF-7 and Vero cell lines. Asian Pac J Trop Biomed 2012;2:826-9.  Back to cited text no. 41
    
42.
Akanji MA, Ojewuyi OB, Yakubu TM. Assessment of erythrocytes as a model for in vitro drug toxicity. Fountain J Nat Appl Sci 2013;2:6-10.  Back to cited text no. 42
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5]
 
 
    Tables

  [Table 1]



 

Top
   
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
     Introduction
   Materials and Me...
     Results
     Discussion
     Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed2172    
    Printed36    
    Emailed0    
    PDF Downloaded102    
    Comments [Add]    

Recommend this journal