Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2017  |  Volume : 13  |  Issue : 51  |  Page : 463-471

Comparative analysis of transcriptomes of macrophage revealing the mechanism of the immunoregulatory activities of a novel polysaccharide isolated from Boletus speciosus frost


1 College of Life Sciences, Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong, Sichuan Province 637009; College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan Province 637009, China
2 College of Life Sciences, Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong, Sichuan Province 637009, China

Correspondence Address:
Yiling Hou
Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong, Sichuan Province 637009
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_151_16

Rights and Permissions

Background: The mechanism of the immunoregulatory activities of polysaccharide is still not clear. Materials and Methods: Here, we performed the B-cell, T-cell, and macrophage cell proliferation, the cell cycle analysis of macrophage cells, sequenced the transcriptomes of control group macrophages, and Boletus speciosus Frost polysaccharide (BSF-1) group macrophages using Illumina sequencing technology to identify differentially expressed genes (DEGs) to determine the molecular mechanisms of immunomodulatory activity of BSF-1 in macrophages. Results: These results suggested that BSF-1 could promote the proliferation of B-cell, T-cell, and macrophages, promote the proliferation of macrophage cells by abolishing cell cycle arrests in the G0/G1 phases, and promote cell cycle progression in S-phase and G2/M phase, which might induce cell division. A total of 12,498,414 and 11,840,624 bp paired-end reads were obtained for the control group and BSF-1 group, respectively, and they corresponded to a total size of 12.5 G bp and 11.8 G bp, respectively, after the low-quality reads and adapter sequences were removed. Approximately 81.83% of the total number of genes (8,257) were expressed reads per kilobase per million mapped reads (RPKM ≥1) and more than 1366 genes were highly expressed (RPKM >60) in the BSF-1 group. A gene ontology-enrichment analysis generated 13,042 assignments to cellular components, 13,094 assignments to biological processes, and 13,135 assignments to molecular functions. A Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the mitogen-activated protein kinase (MAPK) signaling pathways are significantly enriched for DEGs between the two cell groups. Conclusion: An analysis of transcriptome resources enabled us to examine gene expression profiles, verify differential gene expression, and select candidate signaling pathways as the mechanisms of the immunomodulatory activity of BSF-1. Based on the experimental data, we believe that the significant antitumor activities of BSF-1 in vivo mainly involve the MAPK signaling pathways. Abbreviations used: BSF-1: Boletus speciosus Frost polysaccharide.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2155    
    Printed53    
    Emailed0    
    PDF Downloaded71    
    Comments [Add]    

Recommend this journal