Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2017  |  Volume : 13  |  Issue : 51  |  Page : 458-461

The effect of thymoquinone on nuclear factor kappa B levels and oxidative DNA damage on experimental diabetic rats


1 Department of Chemistry, Faculty of Science, Yuzuncu Yil University, Van, Turkey
2 Department of Biochemistry, Yuzuncu Yil University, Faculty of Veterinary Medicine, Van, Turkey

Correspondence Address:
Semiha Dede
Department of Biochemistry, Yuzuncu Yil University, Faculty of Veterinary Medicine, Van
Turkey
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_134_17

Rights and Permissions

Background: Thymoquinone (TQ), the basic bioactive phytochemical constituent of seed oil of Nigella sativa, is one of these herbal drugs known for antidiabetic effects. This study was carried out to assess the effects of the possible role of TQ on nuclear factor kappa B (NF-κB) and oxidative DNA damage levels in experimental diabetic rats. Materials and Methods: Twenty-eight male Wistar Albino rats (200–250 g) were used as experimental subjects. The rats were divided into four groups, including the control, control supplemented with TQ (CT), diabetic (D), and diabetic supplemented with TQ (DT), each containing seven rats. The D and the DT groups were treated with 45 mg/kg streptozotocin (STZ) (intraperitoneal). TQ was administered 30 mg/kg/day for 21 days by oral gavage in the DT and the T groups. Results: It was determined that glucose, glycosylated hemoglobin (HbA1c) levels and alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transpeptidase activities were decreased significantly and approached the control group in the DT group after TQ supplement (P < 0.05). Urea levels were the lowest in CT (P < 0.05). Oxidative DNA damage (8 hydroxy-2-deoxyguanosine) was increased in both of the diabetic groups (D and DT). The NF-κB levels were the highest in Group D (P < 0.05). Conclusion: It was observed that increased glucose and HbA1c levels and the indicators of liver and kidney damages were decreased significantly after TQ supplementation. Oxidative DNA damage and NF-κB levels were increased in the diabetic group, and TQ administration caused a statistically insignificant reduction. Abbreviations used: 8-OHdG: 8 hydroxi-2-deoxiguanosin; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; GGT: Gamma-glutamyl transpeptidase; HbA1c: Glycosylated hemoglobin; NF-κB: Nuclear factor kappa protein; STZ: Streptozotocin; TQ: Thymoquinone.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1661    
    Printed28    
    Emailed0    
    PDF Downloaded94    
    Comments [Add]    

Recommend this journal