Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2017  |  Volume : 13  |  Issue : 51  |  Page : 446-453

Optimization of surfactant-mediated, ultrasonic-assisted extraction of antioxidant polyphenols from rattan tea (Ampelopsis grossedentata) using response surface methodology


1 Department of Food Science, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212001, Jiangsu Province; Department of Cardiothoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, P.R. China
2 Department of Pharmacognosy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, P.R. China
3 Department of Food Science, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212001, Jiangsu Province, P. R. China

Correspondence Address:
Xiu-Quan Xu
301, Xuefu Road, Zhenjiang 212013, Jiangsu Province
P.R. China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pm.pm_159_16

Rights and Permissions

Background: Rattan tea is a medicinal plant that has been used for many years for the treatment of inflammation, fatty liver, tumor, diabetes, and hyperlipidemia. Objective: A green and novel approach based on surfactant-mediated, ultrasonic-assisted extraction (SM-UAE) was developed for the extraction of antioxidant polyphenols from Rattan tea. A nonionic surfactant Tween-80 was selected as extraction solvent. The antioxidant activity was measured by total phenolic content (TPC) and ferric-reducing/antioxidant capacity (FRAC) assay. Materials and Methods: Optimization of extraction parameters including concentration of solvent, ultrasonic time, and temperature were investigated by response surface methodology. The antioxidant activity was measured by TPC and FRAC assay. Results: The optimal extraction conditions were determined as 6.8% (v/v) of aqueous Tween-80, ultrasonic temperature of 54°C, and ultrasonic time of 28.8 min. Under these conditions, the highest TPC value of 360.4 mg gallic acid equivalent per gram of dry weight material (GAE/g DW) was recorded. Moreover, 6.8% (v/v) of aqueous Tween-80, ultrasonic temperature of 54.5°C, and ultrasonic time of 28.4 min were determined for the highest FRAC value of 478.2 μmol of Fe2+/g of weight material (μmol Fe2+/g DW). Compared with other methods, the TPC and FRAC values of 313.5 mg GAE/g DW and 389.6 μmol Fe2+/g DW were obtained by heat reflux extraction using ethanol as solvent, respectively, and 343.2 mg GAE/g DW and 450.1 μmol Fe2+/g DW were obtained by UAE using ethanol as solvent, respectively. Conclusion: The application of SM-UAE markedly decreased extraction time or extraction cost and improved the extraction efficiency, compared with the other methods. Abbreviations used: SM-UAE: Surfactant-mediated ultrasonic-assisted extraction; TPC: total phenolic content; FRAC: Ferric reducing antioxidant capacity; RSM: Response surface methodology; BBD: Box-Behnken design.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed3616    
    Printed70    
    Emailed0    
    PDF Downloaded205    
    Comments [Add]    
    Cited by others 8    

Recommend this journal