Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2017  |  Volume : 13  |  Issue : 51  |  Page : 439-445

Rapid detection of volatile oil in Mentha haplocalyx by near-infrared spectroscopy and chemometrics

1 School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
2 School of Pharmacy, Jiangsu University, Zhenjiang, China

Correspondence Address:
Zhen Ouyang
School of Pharmacy, Jiangsu University. Zhenjiang
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0973-1296.211026

Rights and Permissions

Near-infrared spectroscopy combined with partial least squares regression (PLSR) and support vector machine (SVM) was applied for the rapid determination of chemical component of volatile oil content in Mentha haplocalyx. The effects of data pre-processing methods on the accuracy of the PLSR calibration models were investigated. The performance of the final model was evaluated according to the correlation coefficient (R) and root mean square error of prediction (RMSEP). For PLSR model, the best preprocessing method combination was first-order derivative, standard normal variate transformation (SNV), and mean centering, which had Rc2 of 0.8805, Rp2 of 0.8719, RMSEC of 0.091, and RMSEP of 0.097, respectively. The wave number variables linking to volatile oil are from 5500 to 4000 cm−1 by analyzing the loading weights and variable importance in projection (VIP) scores. For SVM model, six LVs (less than seven LVs in PLSR model) were adopted in model, and the result was better than PLSR model. The Rc2 and Rp2 were 0.9232 and 0.9202, respectively, with RMSEC and RMSEP of 0.084 and 0.082, respectively, which indicated that the predicted values were accurate and reliable. This work demonstrated that near infrared reflectance spectroscopy with chemometrics could be used to rapidly detect the main content volatile oil in M. haplocalyx. Abbreviations used: 1st der: First-order derivative; 2nd der: Second-order derivative; LOO: Leave-one-out; LVs: Latent variables; MC: Mean centering, NIR: Near-infrared; NIRS: Near infrared spectroscopy; PCR: Principal component regression, PLSR: Partial least squares regression; RBF: Radial basis function; RMSEC: Root mean square error of cross validation, RMSEC: Root mean square error of calibration; RMSEP: Root mean square error of prediction; SNV: Standard normal variate transformation; SVM: Support vector machine; VIP: Variable Importance in projection

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded134    
    Comments [Add]    
    Cited by others 5    

Recommend this journal