Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2017  |  Volume : 13  |  Issue : 50  |  Page : 294-300

Hepatoprotective effect of gallotannin-enriched extract isolated from gall on hydrogen peroxide-induced cytotoxicity in HepG2 cells

1 Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, Korea
2 Laboratory of Veterinary Theriogenology, College of Veterinary Medicine, Chungbuk National University, Cheongju 362-763, Korea
3 Department of Organic Material Science and Engineering, Pusan National University, Busan 609-735, Korea, Korea
4 Department of Pharmacy, Chungbuk National University, Cheongju 361-763, Korea

Correspondence Address:
Dae Youn Hwang
Department of Biomaterial Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 627-706
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_424_15

Rights and Permissions

Background: Gall (Galla Rhois [GR]) is known to have antibacterial, anti-inflammatory, antimetastatic, and anti-invasion activities and exert hepatoprotective effects. However, the hepatoprotective effects of gallotannin-enriched GR (GEGR) and their mechanisms have not yet been investigated. Objective: The potential protective effect of GEGR against hepatotoxicity induced by hydrogen peroxide (H2O2) was investigated. Materials and Methods: Changes in cell viability, apoptosis protein expression, and reactive oxygen species (ROS) generation were determined in HepG2 cells that were pretreated with four different concentrations of GEGR (6.25–50 μg/ml) for 24 h before H2O2exposure. Results: GEGR consisted of gallotannin (69.2%), gallic acid (26.6%), and methyl gallate (4.2%) and showed remarkable 2,2-diphenyl-1-picrylhydrazyl scavenging activity (inhibitory concentration 50% = 0.212 μg/ml). The lethal dose 50% and effective dose 50% values for the response of HepG2 cells to GEGR were determined to be 178 and 6.85 μg/ml, respectively. Significant reductions in the immunofluorescence intensity indicating apoptosis were also detected in the nuclei of HepG2 cells stained with 4',6-diamidino-2-phenylindole and Annexin V after GEGR treatment. The Bax/Bcl-2 ratio and active caspase-3 level were higher in H2O2 + vehicle-treated cells. However, these levels gradually decreased to those of the No-treated group in the GEGR pretreated group even though little or no decrease was observed in response to low GEGR concentrations. Furthermore, the GEGR pretreated group showed a reduced level of 2-,7--dichlorofluorescein diacetate stained cells, indicating ROS generation relative to the H2O2 + vehicle-treated group. Conclusion: The results of this study provide strong evidence that GEGR can prevent cell death induced by H2O2in HepG2 cells through the induction of antioxidant conditions. Abbreviations used: COX: Cyclooxygenase; DAPI: 4',6-diamidino-2-phenylindole; DMSO: Dimethyl sulfoxide; DPPH: 2,2-diphenyl-1-picrylhydrazyl; GEGR: Gallotannin-enriched Galla Rhois; GR: Galla Rhois; HPLC: High-performance liquid chromatography; H2O2: Hydrogen peroxide; MMP: Metallopeptidase; MTT: 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; ROS: Reactive oxygen species; UV-Vis: Ultraviolet-visible.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded148    
    Comments [Add]    
    Cited by others 3    

Recommend this journal