Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2017  |  Volume : 13  |  Issue : 50  |  Page : 224-229

Molecular authentication of the traditional medicinal plant “Lakshman Booti” (Smithia conferta Sm.) and its adulterants through DNA barcoding

1 Department of Botany, Cytogenetics and Plant Breeding Laboratory, Shivaji University, Kolhapur; Department of Botany, Yashwantrao Chavan Institute of Science, Satara, Maharashtra, India
2 Department of Botany, Cytogenetics and Plant Breeding Laboratory, Shivaji University, Kolhapur, Maharashtra, India
3 Department of Botany, Angiosperm Taxonomy Laboratory, Shivaji University, Kolhapur, Maharashtra, India

Correspondence Address:
Nikhil B Gaikwad
Department of Botany, Cytogenetics and Plant Breeding Laboratory, Shivaji University, Kolhapur - 416 004, Maharashtra
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/pm.pm_499_16

Rights and Permissions

Background: Smithia conferta Sm. is an annual herb widely used in Indian traditional medical practice and commonly known as “Lakshman booti” in Sanskrit. Morphological resemblance among the species of genus Smithia Aiton. leads to inaccurate identification and adulteration. This causes inconsistent therapeutic effects and also affects the quality of herbal medicine. Aim: This study aimed to generate potential barcode for authentication of S. conferta and its adulterants through DNA barcoding technique. Materials and Methods: Genomic DNA extracted from S. conferta and its adulterants was used as templates for polymerase chain reaction amplification of the barcoding regions. The amplicons were directed for sequencing, and species identification was conducted using BLASTn and unweighted pair-group method with arithmetic mean trees. In addition, the secondary structures of internal transcribed spacer (ITS) 2 region were predicted. Results: The nucleotide sequence of ITS provides species-specific single nucleotide polymorphisms and sequence divergence (22%) than psbA-trnH (10.9%) and rbcL (3.1%) sequences. The ITS barcode indicates that S. conferta and Smithia sensitiva are closely related compared to other species. Conclusion: ITS is the most applicable barcode for molecular authentication of S. conferta, and further chloroplast barcodes should be tested for phylogenetic analysis of genus Smithia. Abbreviations used: BLASTn: Basic Local Alignment Search Tool for Nucleotide; MEGA: Molecular Evolutionary Genetic Analysis; EMBL: European Molecular Biology Laboratory; psbA-trnH: Photosystem II protein D1- stuctural RNA: His tRNA gene; rbcL: Ribulose 1,5 bi-phosphate carboxylase/ oxygenase large subunit gene.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded152    
    Comments [Add]    
    Cited by others 4    

Recommend this journal